Geometry, Topology and Dynamics Seminar

Growth of torsion in low homology groups of arithmetic lattices and mapping class groups Mikolaj Fraczyk (Renyi Institute)

Abstract: Let Γ be a finitely generated countable group and let Γ_n be a sequence of subgroups. We are interested in the growth of log $|H_k(\Gamma_n, \mathbb{Z})_{tors}|$ as the index $[\Gamma : \Gamma_n]$ goes to infinity. We will focus on the cases when Γ is either the mapping class group of a genus $g \ge 2$ surface or $\Gamma = SL(d, \mathbb{Z})$ with $d \ge 3$. For these groups we are able to show that under some natural conditions on (Γ_n) the logarithm of $|H_k(\Gamma_n, \mathbb{Z})_{tors}|$ grows as $o([\Gamma : \Gamma_n])$ when $k \le 3g - 4, d - 2$ respectively. To prove these estimates we consider the action of Γ on the curve complex (in the mapping class group case) or the rational Tits complex (in the SL(d, $\mathbb{Z})$ case) and use them to build an explicit "low dimensional" projective resolution. This is a joint work with Miklos Abert, Nicolas Bergeron and Damien Gaboriau.

Monday, March 11 at 3:00 PM in 636 SEO