A users guide to Twister

Mark Bell
January 23, 2014

Twister is a program by myself, Tracy Hall and Saul Schleimer for constructing triangulations of
surface bundles and Heegaard splittings from a description of a mapping class of a surface. This users
guide will be based on Twister 2.4.1.

1 Getting Twister

Twister can be compiled as a stand-alone program, or as a Python 2 or Python 3 extension. However, it
is also included in SnapPy! and we recommend using this. See the instructions for getting SnapPy at

http://www.math.uic.edu/t3m/SnapPy/installing.html
To compile Twister yourself, you can get the source code for Twister from https://bitbucket.org/
Mark_Bell/twister/ or straight from the Mercurial repository with the command:

H > hg clone https://bitbucket.org/Mark_Bell/twister
To install Twister as a site-package in Python use the command:
H > python setup.py install
Or, to install Twister into your user directory, use the command:
H > python setup.py install --user
To test your installation of Twister use the command:
H > python setup.py test

This will use Twister to construct fibred knot complements in various different ways and check that they
are isometric to those in SnapPy. It should finish with the last line being:

H Overall Result: PASS

1Version 1.3.10 and later.

http://www.math.uic.edu/t3m/SnapPy/installing.html
https://bitbucket.org/Mark_Bell/twister/
https://bitbucket.org/Mark_Bell/twister/

2 Worked Examples

We begin by looking at a basic example of using Twister from within SnapPy.

2.1 Example 1

>>> § = twister.Surface(’S_1_1’)

>>> S.info()

A Twister surface of genus 1 with 1 boundary component(s).
Loops: a, b

Arcs: x

>>> S.info(verbose=True)

A Twister surface of genus 1 with 1 boundary component(s).

Loops: a, b

Inverse names: A, B
Arcs: x

Inverse names: X
Macros:

[, ’a’, ’b’, ’x’]

[’a’, 0, 1, 1]

[’b’>, 1, 0, O]

[’x>, 1, 0, 0]

>>> M = S.bundle(monodromy=’a*B’)
>>> type (M)

<type ’snappy.SnapPy.Manifold’>
>>> M.volume ()

2.0298832128

>>> M.is_isometric_to(Manifold(’4_1’))
True

We start by creating an instance of a twister surface class. In this case we have passed in the string
S_1_1. As this is the name of one of the surface files in Twister’s surface database, that file is loaded and
the corresponding surface created.

As the name suggests, this file describes a torus with one boundary component. However, we check
this by asking for a description of the underlying surface. From this we can also see that this surface
has several curves drawn on it. There are two closed loops, named a and b, and an arc, named x
which connects the boundary to itself. By requesting more verbose information we can find out that
lanbl=laNz|=1and [bNz| =0.

Next we construct a surface bundle over the circle with fibre S. By providing the parameter a*B, we
specify that the monodromy of this bundle should be made by composing a right Dehn twist about a
with a left Dehn twist about b.

This process produces a SnapPy Manifold, which we see has hyperbolic volume 2.0298832128. Finally
we check that the manifold that we have produce is actually the figure-eight knot complement by loading
the complement from SnapPy’s database and checking that they are isometric.

2.2 Example 2

>>> S = twister.Surface(’heeg_fig8’)

>>> S.info()

A Twister surface of genus 2 with O boundary component(s).
Loops:a,b,c

Arcs:

>>> S.info(True)

A Twister surface of genus 2 with O boundary component(s).
Loops: a, b, c

Inverse names: A, B, C

Arcs:

Inverse names:

Macros: h:a*b*C

[, ’a’, ’b’, ’c’]

[’a’, 0, 0, 5]

[’b’, 0, 0, 5]

[’c’, 5, 5, 0]

>>> M = S.splitting(gluing=’’, handles=’a*b*C’)
>>> M.volume ()

2.02988321282

>>> M.is_isometric_to(Manifold(’4_1’))

True

Again we start by creating an instance of a twister surface class. Again, heeg_fig8 is the name of
one of the surface files in T'wister’s surface database and so that file is loaded and the corresponding
surface created.

Checking the information of this surface we see that it is the genus two surface and it has three closed
loops on it, named a, b and c. By requesting more verbose information we discover that these curves
intersect in a complicated way.

Next we construct a Heegaard splitting over S. We do this by taking two copies of S x [0, 1] and first
identifying their upper boundaries via a mapping class and then attaching 2-handles along certain curves
in their lower boundaries. and

The mapping class is determined by the gluing parameter. In this case, as we provided b*A, we specify
that the gluing between the two upper boundaries should be a compostion of a left Dehn twist about b
and a right Dehn twist about a. The 2-handles to attach are determined by the handles parameter. As we
provided a*xb*C, 2-handles will be attached along a and b in the lower boundary of the first compression
body and a 2-handle will also be attached along c in the lower boundary of second compression body.

Again, this produces a SnapPy Manifold which has hyperbolic volume 2.0298832128 and is isometric
to the the figure-eight knot complement.

In fact in this case, the curves on the surface we specially chosen so that this processes would create
the genus two handlebody / compression body decomposition of the figure eight knot complement.

3 Twister Methods

The Twister module provides: Surface (a class), DT_drilling_surface and DT_handles_surface
(functions) and surface_database and version (variables). In this section we discuss each in turn.

3.1 Surfaces

Twister is centered around the Surface class. This represents a finite square complex whose underlying
space S is a 2-manifold (possibly with boundary) along with a special set of named curves on the surface.
The mapping class group of the surface

Mod™ () := Homeo™ (S) /isotopy

is the group of self-homeomorphisms of S up to isotopy and will be key to construct 3—manifolds later.

3.1.1 Initialisation

A Surface can be initialised in several different ways. We can create a new surface by using Surface (surface)
where surface is:

e a string containing the name of a surface file in Twisters surface file database,
e a string containing the path to a surface file,

e a string containing the path to a plink virtual link projection file,

e a string containing the contents of a surface file, or

e a pair of integers (genus, boundary).

In the first three cases, T'wister will create the surface specified by the file. In the fourth case, a
surface with the required genus and number of boundary components will be created with the curves of
the Humphries generating set as the special set of curves, see [1, Figure 13].

The special set of curves that are specified for a Surface are the core curves of the square complex,
that is maximal curves that can be made by connecting one side of a square to the opposite. We require
that core curves these are always simple. A core curve is either a closed loop or an arc with endpoints in
the boundary of the surface.

The surface provides each curve with a name and an inverse name. In the case of a loop, we identify
its name with a right Dehn twist about it and its inverse name with a left Dehn twister about it. In the
case of an arc between two distinct boundary components, we identify its name with a right half twist
about it and its inverse name with a left half twist about it. See Figure 1 and Figure 2. We will also use
the notation T, for a right Dehn twist (half twist) about a loop (arc) named a.

Ty T

Figure 1: A left Dehn twist about the loop . Figure 2: A left half-twist about the arc ~.

We use a string of curve names and inverse names, each separated by a *, to denote the composition
of these Dehn twists and half twists. The composition is performed from left to right, so for example a*b
represents Ty, o T,. This allows us to specify elements of Mod™ (S) by strings.

3.1.2 Information

Information about a Surface can be obtained by using the Surface.info([verbose]) method. This
prints out various pieces of information about the Surface such as the genus, number of boundary
components and as well as the curves on the surface. If verbose is set to True then additional information,
such as the cuves inverse names, macros and a matrix of the number of intersections between each of the
pairs of curves is included.

This is a useful method to use to check that the surface is indeed the one that you think it is.

3.1.3 Bundles

One of the main methods of a Surface is Surface.bundle (monodromy) which constructs a surface bundle
over the circle with fibre this surface.

More precisely, suppose that S is a surface class and monodromy is a string describing the mapping
class f € Mod™(S). Then S.bundle(monodromy) returns the 3-manifold:

§ 3101 /(2,1) ~ (6(2),0)

where ¢ is any representative of f.

3.1.4 Splittings

The other main method of a Surface is Surface.splitting(gluing, handles) which constructs a
Heegaard splitting over this surface.

More precisely, suppose that S is a surface class, gluing is a string describing the mapping class
f € Mod*(S) and handles is a string containing loop names and inverse names, each separated by a *.
Then S.splitting(gluing, handles) returns the 3-manifold obtained by the following process. Take
two copies of S x [0, 1], called M; and Ms: For each loop name (inverse name) listed in handles, attach
a 2-handle via its cylinder boundary along a copy of that loop in d_M; (0_Ms). Finally identify 9, M;
and 04 M via f.

3.1.5 Random words

A Surface also provides the method Surface.random_word(n) which constructs a random word in the
generators of Mod™(9) of length n. It has optional flags twists, half_twists, macros and inverses
which determine which generators are permitted. By default all are permitted. If all generators are
disallowed then the empty word is returned.

3.1.6 Optional arguments

Both Surface.bundle (mondromy) and Surface.splitting(gluing, handles) also accept several op-
tional arguements:

o name=None This sets a custom name for the manifold produced. If none is specified then monodromy
and gluing + ° ’ + handles are used for Surface.bundle() and Surface.splitting() respec-
tively.

e warnings=True This specifies if any warnings that are produced duing the construction should be
shown. For example if a boundary component with genus greater than 1 is found. Setting this
to False suppresses all warnings, which may be useful when running Twister as part of a batch
command. However we recommend the reader to consider all warnings as errors.

e optimize=True This specifies whether or not after building a manifold Twister should attempt to
reduce the number of tetrahedra used. This is done by a folding off processes in which adjacent
boundary faces are glued together where it will not change the manifold (topologically). See the
function ‘foldoff’ in twister.cpp and close_cusps.c in the SnapPea kernel for further information
about this process. This makes the triangulation smaller and quicker to load in SnapPy.

e debugging_level=0 This specifies the debugging level which Twister is run at. This determines
how much information Twister will display about the processes that it performs. Debugging level 1
can be used to check that commands are being parsed correctly.

e return_type=’manifold’ This specifies how the result should be returned. The possible options
are 'manifold’, 'triangulation’ and ’string’. In the 'manifold’ case a SnapPy Manifold is returned. In
the ’triangulation’ case a SnapPy Triangulation is returned. In the ’string’ case a string containing
a snappea file is returned.

3.1.7 Surface methods

As well as Surface.info(...), Surface.bundle(...) and Surface.splitting(...), a Surface object
also stores various properties of the underlying surface. Below are listed the Surface methods:

e Surface.surface_contents

e Surface.num_vertices

e Surface.num_edges

e Surface.num_squares

e Surface.Euler_characteristic

e Surface.genus

e Surface.num_boundary

e Surface.curves

e Surface.intersection_matrix
These should satisfy identities such as:

Euler_characteristic = num_vertices — num_edges + num_squares

= 2 — 2genus — num_boundary

3.2 DT surface functions

Twister includes a pair of functions for producing surfaces from Dowker—Thistlethwaite codes. These are
used as part of the test suite.

twister.DT_drilling_surface(DT_code)

This function takes a Dowker—Thistlethwaite code of a knot, given as a list of integers, and returns
the a Surface that can be used to produce that knot complement by performing drillings.

twister.DT_handles_surface(DT_code) A function which takes a Dowker—Thistlethwaite code of
a knot, given as a list of integers, and returns the a Surface that can be used to produce that knot
complement by attaching handles. This is used as part of the test suite.

3.3 Surface database

Twister maintains a set twister.surface_database which stores the name of each surface file in Twister’s
surfacfe database. If at initialisation Surface is passed a string in this set then the corresponding surface
is loaded.

3.4 Version

Finally twister.version is a string storing the current version number of the twister kernel.

4

Parsing

A Surface may also define several macros. These listed by Surface.info(verbose=True). The primary
use for macros is to create shortcuts for frequently used commands. In particular, scripts for producing
surface files can also include macros to allow particular surface bundles or Heegaard splittings to be
produced with little input.

Macros have a name and a command. When creating a bundle or splitting any marco name that appear
in the monodromy, gluing or handles parameters are replaced by their command.

For example, consider Example 2.2 again. We can see from the advanced information printed that
there is a macro which replaces h with a*b*C. Because of this we can produce the genus two handlebody
/ compression body decomposition of the figure eight knot complement with two different commands.

>>>
>>>
>>>
>>>
True

5

S = twister.Surface(’heeg_fig8’)

M = S.splitting(gluing=’’, handles=’axbx*C’)
N = S.splitting(gluing=’’, handles=’h’)
M.is_isometric_to(N)

Figure-eight examples

We now give several different examples for how to build the figure-eight knot complement using Twister.
Note that in all of these examples the surface files used are prefix unique and so all ‘*’ separators can be

omitted.

>>> M1 = twister.Surface(surface=’S_0_4’) .splitting(gluing=’z*z*Y*Y’, handles=’a*B’)
>>> M2 = twister.Surface(’S_0_4’).splitting(’z*z*A’, ’a*B’)

>>> M3 = twister.Surface(’S_0_6’) .splitting(’z*Y*z*Y’, ’axAxb*B’)

>>> M4 = twister.Surface(’S_1_1’) .bundle(monodromy=’A*b’)

>>>
>>>
>>>

M5 = twister.Surface(’S_2_heeg’) .splitting(gluing=’'e’, handles=’axb*CxD’)
M6 = twister.Surface(’heeg_fig8’).splitting(’’, ’axb*C’)
M7 = twister.Surface(’S_0_5’).splitting(’ !vk!y*lu*!zx!1x’, ’a*xb*ckd*xexA*B*C*D*E’)

e M1: This command builds a two-bridge presentation of the figure-eight knot. We start with the

surface Sp 4, attach two-handles above the loop a and below the loop b and finally perform four
half twists on neighbourhoods of the rectangles z and y.

e M2: Performs the same actions as before except this time we do a pair of half twists on a neighbour-

hood of the rectangle z and one Dehn twist about the annulus a. As a is isotopic to the boundary
of a regular neighbourhood of y, performing a Dehn twist about a is isotopic to performing two half
twists about y.

e M3: Using Sy ¢ as the Heegaard surface, this gives the figure-eight knot as the closure of a three-strand

braid.

e M4: Build a surface bundle over the circle with fibre S; ; and then perform two Dehn twists, a right

one about b and then a left one about a.

e M5: Build a Heegaard splitting over the surface S5, attach two handles above a and b and below ¢

and d and finally drill out a neighbourhood of the loop e. Here the loop e is the figure-eight knot
lying on the standard genus two splitting of S3.

e M6: Build a Heegaard splitting of the figure-eight knot complement. The file describes the handle

structure coming from the handlebody / compression body decomposition of the manifold. This is
derived from the upper tunnel for the two-bridge presentation.

e M7: Build a Heegaard splitting over the surface Sy 5 with a carefully chosen generating set such that

drilling the rectangles (in this order) after capping each cusp above and below is the complement of
the figure-eight knot in the three-sphere.

It is worth noting that, with an appropriate gluing, any two-bridge link can be built using the
command:

H >>> M = twister.Surface(surface=’S_0_4’).splitting(gluing=GLUING, handles=’a*B’)
and all possible three-braid closures can be built using the commmand:
H >>> M = twister.Surface(surface=’S_0_6’).splitting(gluing=GLUING, handles=’a*A*b*B’)

Consider, for example, the complement of the 815 knot which is the closure of a three-braid but not a two-
bridge knot. Hence it can be built using last command with the gluing VxV*z*yxx*wkvxx Wk vk xkwkv*wkz
but cannot be built using the penultimate command.

6 Surface Files

We now describe the specification for a Twister surface file. An example of a valid surface file is given in
Figure 4. To avoid conflicting with any of the surfaces in Twister’s surface database we suggest that any
user made surface files are given the ‘.sur’ extension.

The first line of a surface file must be

|| # A Twister surface file

Each following line must either start with a #, in which case this line is a comment, or be of one of the
following forms:

annulus,<name>,<inverse_name>,<sequence>#
rectangle,<name>,<inverse_name>,<sequence>#
macro,<name>,<command>#

We require that <name> and <inverse_name> are strings matching the Perl compatible regular expression
[a-zA-Z]\w+.

We also require that <sequence> is a comma separated list of signed integers. The required sequence
is given by first numbering the squares from 0 to n and orienting the curves. The sequence assigned to a
curve are the indices of the squares it passes through and the sign used for each is index is + if this curve
and the other curve passing through the square form a positive basis and - otherwise. For example, see
Figure 3.

Figure 3: Curve sequence ‘+4,+2, —0,+6’.

We require that <command> be a valid Twister command.

C

A Twister surface file

- annulus,a,A,+0,+1,+2,+3#

_o annulus,b,B,-1#
annulus,c,C,-4#
rectangle,x,X,-0#
rectangle,y,Y,-2#

X b y

Figure 4: A surface file encoding the twice-punctured torus.

References

[1] Catherine Labruére and Luis Paris. Presentations for the punctured mapping class groups in terms of
Artin groups. Algebr. Geom. Topol., 1:73-114 (electronic), 2001. [4]

	Getting Twister
	Worked Examples
	Example 1
	Example 2

	Twister Methods
	Surfaces
	Initialisation
	Information
	Bundles
	Splittings
	Random words
	Optional arguments
	Surface methods

	DT surface functions
	Surface database
	Version

	Parsing
	Figure-eight examples
	Surface Files

