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I. Introduction 
To the extent that this paper is just about the Fibonacci series it is 
about the Fibonacci Form 
 

F = F  F=
 

 
whose notation we shall explain in due course. The Fibonacci form is 
an infinite abstract form that reenters its own indicational space, 
doubling with a shift that produces a Fibonacci number of divisions 
of the interior space at every given depth. This is the infinite 
description of well-known recursions that produce the Fibonacci 
series.  
 
The paper is organized to provide a wider background for this point 
of view. We begin by recalling the relationship of the Fibonacci 
series with the golden ratio and the golden rectangle and we prove a 
Theorem in Section II showing the uniqueness of the infinite 
spiraling decomposition of the golden rectangle into distinct 
squares. 
The proof of the Theorem shows how naturally the Fibonacci 
numbers and the golden ration appear in this classical geometric 
context.  Section III provides background about Laws of Form and  
the formalism in which the mark 
 

 
 
is seen to represent a distinction. With these concepts in place, we 
are prepared to discuss infinite reentering forms, including the 



Fibonacci form in Section IV. Section V continues the discussion of 
infinite forms and "eigenforms" in the sense of Heinz von Foerster. 
Finally, Section VI returns to the Fibonacci series via the patterns of 
self-interaction of the mark. Here the mark is conceived as an 
"elementary particle" that can interact with itself to either produce 
itself or to annihilate itself. There are a Fibonacci number of  
patterns of interaction of a collection of  n marks, leading to the 
unmarked state. This Fibonacci property of the self-interactions of 
the mark is a link between Laws of Form, topology and quantum 
information theory. We  give the beginning of this relationship in 
the last secion where we discuss how braiding of quantized marks 
generates all the unitary transformations one needs for quantum 
information theory! This is the celebrated Fibonacci model for 
quantum computation. 
 
II. Geometry of the Golden Ratio 
In Figure 1 we have a rectangle of length 377 units and width 233 
units. It is paved with squares of sizes  
 
233 x 233, 144 x 144, 89 x 89, 55 x55, 34 x 34, 21 x 21,  
13 x13, 8 x 8, 5 x 5, 3 x 3, 2 x 2, 1 x 1, 1 x 1. 
 
This attests to the fact that for the Fibonacci numbers 
 
1,1,2,3,5,8,13,21,34,55,89,144,233,377,  
 
the sum of the squares of the Fibonacci numbers up to a given 
Fibonacci number is equal to the product of that Fibonacci  
number with its successor. For example, 
 
12 + 12 + 22 + 32 + 52 + 82 = 8 x13. 
 
Letting 
f(0) = 1 
f(1) = 1 
f(2) = 2 
f(3) = 3 
f(4) = 5 
and  
f(n+1) = f(n) + f(n-1), 
 
we have that a rectangle of size f(n) x f(n+1) can be paved with 
squares of different sizes, all except for a repetition 



of the size 1 x 1  at the very end of the spiraling process of cutting 
off squares that are the width of the given rectangle.  
(The fascinating problem of paving a rectangle with squares of all 
unequal sizes has been studied by Brooks, Smith, Stone and Tutte. 
See [Tutte1, Tutte2].) 
 
It is well-known that the process of cutting off squares can be 
continued to infinity if we start with a rectangle that is of the size 
Phi x1 where Phi is the Golden Ratio Phi = (1 + sqrt{5})/2). 
 
This is no mystery. 
Such a process will work when the new rectangle is similar to the 
original one. That condition is embodied in the equation 
W/(L-W) = L/W, and taking W=1, we find 1/(L-1) = L, whence 
L2 - L -1 = 0, whose positive root is the Golden Ratio. 
 
 
It is also well-known that Phi is the limit of successive ratios of 
Fibonacci numbers with  
 1 < 3/2 < 8/5 < 21/13 < ... < Phi < ... < 13/8 < 5/3 < 2. 
 

 
Figure 1 -- The Fibonacci Rectangles 

 
We ask:  Is there any other proportion for a rectangle, other than 
the Golden Proportion, that will allow the process of  



cutting off successive squares to produce an infinite paving of the 
original rectangle by squares of different sizes? The answer is: No! 
 
Theorem. The only proportion that allows this pattern of  
cutting off successive squares to produce an infinite paving of the 
original rectangle by squares of different sizes is the Golden Ratio. 
 

 
Figure 2 -- Characterizing the Golden Ratio 

 
Proof. View Figure 2.  
Suppose the original rectangle has width W and length L. 
In order for the process of cutting off the square to produce a single 
new rectangle whose own square cut-off is smaller than 
the first square, we need the new rectangle to have width L-W and 
length W with  L-W < W. 
With this inequality, the square cut off from the new rectangle will 
be smaller than the first square cut off from the original  
rectangle.  
 
In order for this pattern of cutting to persist forever, we need an 
infinite sequence of inequalities, each derived from the 
previous one. That is, we start with initial length L and width W. 
We excise a square of size W x W obtaining a new length L' = W 
and a new width W' = L-W. We require that W'<L' ad infinitum: 
W < L 
L - W < W 



W - (L - W) < L - W 
L- W - (W - (L - W)) < W - (L - W) 
ad infinitum. 
 
Collecting the algebra, we have: 
W < L 
L - W < W 
2W - L < L - W 
2L - 3W < 2W - L 
5W - 3L < 2L - 3W 
5L - 8W < 5W - 3L 
13W -8L < 5L - 8W 
ad infinitum. 
But now the Fibonacci pattern is apparent. 
Look at what each of these inequalities says: 
W < L 
L < 2W 
3W < 2L 
3L < 5W 
8W < 5L 
8L < 13W 
21W < 13L 
ad infinitum. 
These in turn say: 
L/W > 1 
L/W < 2 
L/W > 3/2 
L/W < 5/3 
L/W > 8/5 
L/W < 13/8 
L/W > 21/13 
ad infinitum. 
 
Thus we see from this pattern that L/W is sandwiched between 
ratios of Fibonacci numbers just as we know the Golden Ratio is  
sandwiched: 
1 < 3/2 < 8/5 < 21/13 < ... < L/W < ... < 13/8 < 5/3 < 2, 
and this implies that L/W = Phi = (1 + sqrt{5})/2. 
The rectangle is Golden.  QED 
 
Here is another take on the Theorem. As above, let  
L'=W and W' = L - W with the assumption that  
W < L and L-W < W. Then 



 
L/W = (W + (L-W))/W = 1 + (L-W)/W = 1 + 1/(W/(L-W)). 
 
Thus  
 
L/W = 1 + 1/(L/W)'  
 
where (L/W)' = L'/W'. 
We see that if we define P = P0 = L/W and Pn+1 = ((L/W)n)' 
then 
 
P = 1 + 1/P1 = 1 + 1/(1 + 1/P2)  
= 1 + 1/(1 + 1/(1 + 1/P3)) = ... 
 
If the Pn have a  limiting value, then  
 
L/W = P =  1 + 1/(1 + 1/(1 + 1/...)). 
 
In fact we have proved that (L/W)' = L/W. In this way we 
recapture the well-known formula for the golden ratio as a 
continued fraction. 
 
Phi =  1 + 1/(1 + 1/(1 + 1/...)). 
 
Note again that we did not start with the assumption that  
L/W = L'/W'. We proved that the Golden Proportion follows from 
the assumption that one can continue the dissection into squares ad 
infinitum. 
 
III. Laws of Form 
"Laws of Form" by George Spencer-Brown [LOF] is a lucid book with 
a topological notation based on one symbol, the mark: 
 

 
 
This single symbol represents a distinction between its inside and its 
outside: 



Inside

Outside

 
As is evident from the figure above, the mark is regarded as a 
shorthand for a rectangle drawn in the plane and dividing the plane 
into the regions inside and outside the rectangle.    
 
In this notation the idea of a distinction is instantiated in the 
distinction that the mark makes in the plane. Patterns of non-
intersecting marks (that is non-intersecting rectangles) are called 
expressions. For example, 
 

 
 
In this example, I have illustrated both the rectangle and the 
marked version of the expression.  In an expression you can say 
definitively of any two marks whether one is or is not inside the 
other.  The relationship between two marks is either that one is 
inside the other, or that neither is inside the other.  These two 
conditions correspond to the two elementary expressions shown 
below. 
 

 
 
The mathematics in Laws of Form begins with two laws of 
transformation about these two basic expressions. Symbolically, 
these laws are: 
 



=

=

 
 
 
In the first of these equations (the law of calling) two adjacent 
marks condense to a single mark, or a single mark expands to form 
two adjacent marks.  In the second equation (the law of crossing) 
two marks, one inside the other, disappear to form the unmarked 
state indicated by nothing at all.  Alternatively, the unmarked state 
can give birth to two nested marks. A calculus is born of these 
equations, and the mathematics can begin.   
 
 Spencer-Brown begins his book, before introducing this notation, 
with a chapter on the concept of a distinction.  
 
"We take as given the idea of a distinction and the idea of an 
indication, and that it is not possible to make an indication without 
drawing a distinction. We take therefore the form of distinction for 
the form."   
 
From here he elucidates two laws: 
 
1. The value of a call made again is the value of the call. 
2. The value of a crossing made again is not the value of the 
crossing. 
 
The two symbolic equations above correspond to these laws. The 
way in which they correspond is worth discussion.  
 
First look at the law of calling. It says that the value of a repeated 
name is the value of the name. In the equation 

=
 

 
one can view either mark as the name of the state indicated by the 
outside of the other mark.   
 



In the other equation 

=

 
 
the state indicated by the outside of a mark is the state obtained by 
crossing from the state indicated on the inside of the mark. Since 
the marked state is indicated on the inside, the outside must 
indicate the unmarked state.  The Law of Crossing indicates how 
opposite forms can fit into one another and vanish into the Void, or 
how the Void can  produce opposite and distinct forms that fit one 
another, hand in glove. 
 
 The same interpretation yields the equation 

=

 
 
where the left-hand side is seen as an instruction to cross from the 
unmarked state, and the right hand side is seen as an indicator of 
the marked state. The mark has a double carry of meaning. It can be 
seen as an operator, transforming the state on its inside to a 
different state on its outside, and it can be seen as the name of the 
marked state. That combination of meanings is compatible in this 
interpretation.   
 
From indications and their calculus, one moves to algebra where it 
is understood that a variable is the conjectured presence or absence 
of a mark.  Thus  

A  
 
stands for the two possibilities 

=   

=   , A = 

, A = 

 
 
In all cases of A we have 

A  = A . 



Thus begins algebra with respect to this non-numerical arithmetic of 
forms.  The primary algebra that emerges is a subtle precursor to 
Boolean algebra.   
 
Other examples of  algebraic rules are the following: 

aa = a

a a =

ab b = ba

a =

  
 
Each of these rules is easy to understand from the point of view of 
the arithmetic of the mark. Just ask what you will get if you 
substitute values of a and b into the equation. For example, in the 
last equation, if a is marked and b is unmarked, then the equation 
becomes 
 

=
 

 
which is certainly true, by the law of calling. 
 
With algebra one can solve equations, and Spencer-Brown pointed 
out that one should consider equations of higher degree in the 
primary algebra just as one does in elementary algebra.  
 
Such equations can involve self-reference. Lets look at ordinary 
algebra for a moment. 
 

x2 = ax + b 
 

is a quadratic equation with a well-known solution, and it is also 
well-known that the solution is sometimes imaginary in the sense 
that it utilizes complex numbers of the form  R +Si where i2 = -1. 
One can re-write the equation as  
 

x = a + b/x. 
 



In this form it is indeed self-referential, with x re-entering the 
expression on the right. We could "solve" it by an infinite reentry or 
infinite continued fraction: 
 

x = a + b/(a + b/(a +b/(a +b/(a + b/(a + ...))))). 
 
In this infinite formalism it is literally the case that   x = a + b/x 
and we can write 
 

[a+ b/  ]a + b/(a+b/(a+...))) =

 
 
to indicate how this form reenters its own indicational space. 
This formal solution to the quadratic equation converges to a real 
solution when the quadratic equation has real roots. For example, if 
a=1=b, then 
 

1+1/(1+1/(1+...))) = [1+ 1/  ]

 
 
converges to the positive solution of  x2 = x + 1, which is the 
golden  
ratio, φ = (1 + _5)/2.    
 
On the other hand, the quadratic equation may have imaginary 
roots. (This happens when a2 + 4b is less than zero.) Under these 
circumstances, the formal solution does not represent a real 
number. 
For example, if i denotes the square root of minus one, then we 
could write 
 

= -1/(-1/(-1/...))i = [-1/ ]
 

 
to denote a formal number with the property that  
 

i = -1/i .  
 



Spencer-Brown makes the point that one can follow the analogy of 
introducing imaginary numbers in ordinary algebra to introduce 
imaginary boolean values in the arithmetic of logic. 
An apparently paradoxical equation such as  
  

J =  J  
 
can be regarded as an analog of the quadratic  x = -1/x, and its 
solutions will be values that go beyond marked and unmarked, 
beyond true and false.  

...
J = =

 
 
Sometimes one represents J as an infinite form that reenters its own 
indicational space. 
 
IV. Infinite Recursive Forms 
Constructions involving the mark, suggest considering all possible 
expressions, including infinite expressions, with no arithmetic 
initials other than commutativity of juxtapositions. 
We shall call such expressions forms.  Here we shall discuss some of 
the phenomenology of infinite forms that are described by reentry. 
This simplest example of such a form is the reentering mark J as 
discussed above. Here are the next two simplest examples. 

D = =  DD

F = F  F=
 

I call D the doubling form, and F the Fibonacci form. 
A look at the recursive approximations to D shows immediately why 
we have called it the doubling form (approximations are done in 
box form): 



... ... ... ... ... ... ... ...
D = 

 
  
We see from looking at the approximations, that the number of 
divisions of D doubles at each successive depth beyond depth zero. 
Letting Dn denote the number of divisions of D at depth n, we see 
that Dn = 2n-1.  
 
Given any forms G and H, we define Gn to be the number of 
divisions of G at depth n.  We have the basic formulas: 

G nn+1
 = G

(GH)
n = G   +   Hn n

 
 
In the case of the Fibonacci form, we have 
 

F = F F=

F F F F=

 
Thus 



F FFn+1 =

n+1

F F
nn

+=

= F Fn+n-1
Fn+1

 
 
For the Fibonacci form,  Fn+1 = Fn + Fn-1 with F0=F1=1.  
The depth counts in this form are the Fibonacci numbers 
 

1,1,2,3,5,8,13,21,34,55,89,144,... 
 

with each number the sum of the preceding two numbers. 
 

... ... ... ... ...... ... ...F = 

The Fibonacci Form  
 
It is natural to define the growth rate µ(G) of a form G to be limit of 
the ratios of successive depth counts as the depth goes to infinity. 
 

µ(G) = limn-->Infinity  Gn+1/Gn. 
 
Then we have µ(D) = 2, and  µ(F) = (1 + _5)/2, the golden ratio. 
 



 
Finally, here is a natural hierarchy of recursive forms, obtained each 
from the previous by enfolding one more reentry. 
 

J
J'

J''  
 
Given any form G, we define  G' by the formula shown below, so 
that 
 

G G'=

G'

GG'=

G' Gn+1 n n-1
+=

 
This implies that  
 
G'n+1 - G'n  = Gn-1. 
 
Thus the discrete difference of the depth series for G' is (with a 
shift) the depth series for G.  The series J, J', J'' , J'' ', . .. is 
particularly interesting because: 
 
The depth sequence  (J(n))k is equal to the maximal number of 
divisions of n-dimensional Euclidean space by k-1 hyperspaces of 
dimension n-1.   
 
We will not prove this result here, but note that J takes the role of a 
point (dimension zero) with  Jk = 1 for all k,  
while J' satisfies J'k+1 = J'k + 1 (k > 0), so that  
J'k = k-1 for k>1.  
This is the formula for the number of divisions of a line by k-1 
points.  
 



J'

......
...

...
... 

=

=

 
 
To think about the divisions of hyperspace, think about how a 
collection of lines in general position in the plane intersect one 
another. If a new line is placed, it will cut a number of regions into 
two regions. The number of new regions is equal to the number of 
divisions made in the new line itself. This is a verbal description of 
the basic recursion given above. 
 

1 2 4

7 11 16

1 + 1 = 2

2 + 2 = 4

4 + 3 = 7

7 + 4 = 11

11 + 5 = 16

...  
 



 
The very simplest recursive forms yield a rich complexity of 
behaviours that lead directly into the mathematics of imaginary 
numbers and oscillations, patterns of growth, dimensions and 
geometry.. 
 
There is an eternity and a spirit at the center of each complex form. 
That eternity may be an idealization, a "fill-in", but it is nevertheless 
real. In the end it is that eternity, that eigenform unfolding the 
present moment that is all that we have.  We know each other 
through our idealizations of the other. We know ourselves through 
our idealization of ourselves. We become what we were from the 
beginning,  a Sign of Itself [P, MP] .   
 
V. Eigenforms 
Consider the reentering mark. 
 

 
 
This is an archetypal example of an eigenform in the sense of Heinz 
von Foerster [VF].  An eigenform is a solution to an equation, a 
solution that occurs at the level of form, not at the level of number. 
You live in a world of eigenforms. You thought that those forms you 
see are actually "out there"?  Out where?  The very space, the 
context that you regard as your external world is an eigenform. It is 
your organism's solution to the problem of distinguishing itself in a 
world of actions. 
 
The shifting boundary of Myself/MyWorld  is the dynamics of the 
form that "you" are.  The reentering mark is the solution to the 
equation 

J =  J  
 
where the right-angle bracket  distinguishes a space in the plane. 
This is not a numerical equation.  One does not even need to know 
any particularities about the behaviour of the mark to have this 
equation.  It is akin to solving 



Me  =   

Me

 
 
by attempting to create a space where "I" can be both myself and 
inside myself, as is true of our locus psychological.  And this can be 
solved by an infinite regress of Me's inside of Me's. 
 

Me  =   

Me

 
 
Just so we may solve the equation for J by an infinite nest of boxes 

...
J =

 
 
Note that in this form of the solution, layered like an onion, the 
whole infinite form reenters its own indicational space.  It is indeed 
a solution to the equation 

J =   J  
 
The solution in the form  
 



J =  
 

 
is meant to indicate how the form reenters its own indicational 
space. This reentry notation is due to G. Spencer-Brown.  Although 
he did not write down the reentering mark itself in his book "Laws 
of Form",  it is implicit in the discussion in Chapter 11 of that book. 
 
It is not obvious that we should take an infinite regress as a model 
for the way we are in the world.  Everyone has experienced being 
between two reflecting mirrors and the veritable infinite regress that 
arises at once in that situation.  Physical processes can happen more 
rapidly than the speed of our discursive thought, and thereby 
provide ground for an excursion to infinity.   
 
Here is one more example. This is the eigenform of the Koch fractal 
[SRF,EF]. In this case one can write the eigenform equation 

 

K = K { K  K } K. 

 
The curly brackets in the center of this  
equation refer to the fact that the two middle copies within the 
fractal are inclined with respect to one another and with respect to 
the two outer copies.  In the figure below we show the geometric  
configuration of the reentry. 
 
The Koch fractal reenters its own indicational space four times (that 
is, it is made up of four copies of itself, each one-third the size of 
the original.  We say that the Koch fractal has replication rate four 
and write R(K)=4. We say it has length ratio three and write 
F(K)=3. 
 
In describing the fractal recursively, one starts with a segment of a 
given length L. This is replaced by a R(K) segments each of length 
L' = L/F(K). In the equation above we see that R(K)=4 is the 
number of reentries, and F(K) is the number of groupings in the 
reentry form. 
 



It is worth mentioning that the fractal dimension D of a fractal such 
as the Koch curve is given by the formula 
 

D = ln(R)/ln(F)  
 
where R is the replication rate of the curve , F is the length ratio 
and ln(x) is the natural logarithm of x. 
 
In the case of the Koch curve one has D = ln(4)/ln(3). The fractal 
dimension measures the fuzziness of the limit curve. For curves in 
the plane, this can vary between 1 and 2, with curves of dimension 
two having space-filling properties. 
 

It is worth noting that we have, the case of an abstract, grouped 
reentry form such as K = K { K  K } K, a corresponding abstract 
notion of fractal dimension, as described above  
 
D(K) = ln(Number of Reentries)/ln(Number of Groupings). 
 
As this example shows, this abstract notion of dimension interfaces 
with the actual geometric fractal dimension in the case of 
appropriate geometric realizations of the form. There is more to 
investigate in this interface between reentry form and fractal form. 

 

K = K { K K } K  



 
In the geometric recursion, each line segment at a given stage is 
replaced by four line segments of one third its  length, arranged  
according to the pattern of reentry as shown in the figure above.  
The recursion corresponding to the Koch eigenform is illustrated in 
the next figure. Here we see the sequence of approximations leading 
to the infinite self-reflecting eigenform that is known as the Koch 
snowflake fractal. 

 
 
Five stages of recursion are shown. To the eye, the last stage vividly  
illustrates how the ideal fractal form contains four copies of itself, 
each one-third the size of the whole. The abstract schema 
 



K = K { K K } K  

 
for this fractal can itself be iterated to produce a "skeleton" of the  
geometric recursion: 

 

K = K { K K } K  

   = K { K K } K  {  K { K K } K  K { K K } K  } K { K K } K   

   = ... 

 
We have only performed one line of this skeletal recursion. There 
are sixteen K's in this second expression just as there are sixteen 
line segments in the second stage of the geometric recursion. 
Comparison 
with this abstract symbolic recursion shows how geometry aids the 
intuition.  
 
Geometry is much deeper and more surprising than the skeletal 
forms. The next example illustrates this very well. Here we have 
the initial length L being replaced by a length three copies of L' 
with L/L'  equal to the square root of 3. (To see that L/L' is the 
square root of three, refer to the illustration below and note that  
L'= _(1 + 3) = 2, while L = _(9 + 3) = 2_3.) Thus this fractal 
curve has dimension D = ln(3)/ln(_3) = 2. In fact, it is strikingly 
clear from the illustration that the curve is space-filling. It tiles its 
interior space with rectangles and has another fractal curve as the 
boundary limit. 

 



 



 
The interaction of eigenforms with the geometry of physical, mental, 
symbolic and spiritual landscapes is an entire subject that is in need 
of deep exploration.  Compare with [EF]. 
 
As a last fractal example for this section, here is a beautiful 
specimen SB generated by the Spencer-Brown mark. That is, the 
generator for this fractal is a ninety degree bend. Each segment is 
replaced by two segments at ninety degrees to one another, and the 
ratio of old segment to new segment is  _2. Thus we have  
D(SB) = ln(2)/ln(_2) = 2, another space-filler. Notice how in the 
end, we have an infinite form that is a superposition of two smaller 
copies of itself at ninety degrees to one another. 
 



 
 

 



It is usually thought that the miracle of recognition of an object 
arises in some simple way from the assumed existence of the object 
and the action of our perceiving systems.  What is to be appreciated 
is that this is a fine tuning to the point where the action of the 
perceiver, and the perception of the object are indistinguishable. 
Such tuning requires an intermixing of the perceiver and the 
perceived that goes beyond description.  Yet in the mathematical 
levels, such as number or fractal pattern, part of the process is 
slowed down to the point where we can begin to apprehend it.   
There is a stability in the comparison, in the one-to-one 
correspondence that is a process happening at once in the present 
time. The closed loop of perception occurs in the eternity of present 
individual time. Each such process depends upon linked and 
ongoing eigenbehaviors and yet is seen as simple by the perceiving 
mind. 
 
VI. Fibonacci Particles 
Think of the Spencer-Brown mark as an "elementary particle" 
that has two modes of interaction. Two marks can interact 
to produce either one mark or nothing. 
 

=

= *

 
 
Here we have indicated the interactions, with * denoting the 
unmarked state. An entity whose only interaction is to produce itself 



or annihilate itself is surely the simplest non-trivial elementary 
particle! The mark embodies this pattern by the choice, for two 
marks that they interact via calling or crossing. The choice at the 
level of distinctions is the question whether one distinction is inside 
or outside of the other.  
 
Here is a way to interface Laws of Form and quantum theory, by 
studying the structure of this single-particle theory.  The purpose of 
including this structure in the present paper is its relationship with 
the Fibonacci numbers.  We  look at the possible successive 
interations of this particle. Consider the diagram below. 
 

?

? =      or   *

* *

a

b

 
 
 In this diagram we have illustrated four initial particles that are to 
interact in the pattern shown above. That is, the left two particles 
interact to produce the question mark (which can be either marked 
or unmarked). Then the question mark interacts with a mark to 
produce a mark and the mark interacts with the fourth mark across 
the top to produce an unmarked state,  shown at the bottom of the 
diagram. If we want an unmarked state to appear at the bottom of 
the diagram then the last interaction must be between two marks, 
since an unmarked state interacting with a marked state can 
produce only a marked state. The question mark can be either 
marked or unmarked to accomplish the overall pattern. In the box 
next to this  
process diagram we have indicated the form that was filled in. In the 
form we have unknown states a and b that can be either marked or 
unmarked. We see that the solutions to the possibilities for a and b 



are  (a,b) = (U, M) and (a,b) = (M,M) where U stands for the 
unmarked state, and M stands for the marked state. With two 
solutions, we say that this space of processes is two-dimensional. 
 
Now consider the processes that will solve the analogous problem 
with five initial marks. 
 

*

a
b

(a,b) = (    ,    )

(    ,    )

(    ,    )

*

*

dim(V(5)) = 3 = f(3)
 

 
Now we get sequences of the form (a,b,M) and we see that the 
solutions (a,b) are: (M,M), (M,U), (U,M). One thing that will not 
do is  (a,b) = (U,U). We cannot have two consecutive unmarked 
states in this game, since any give unmarked state will interact with 
one of the initial marks to produce a marked state. Thus we see that 
for a general process space with n + 2 initial marks, and ending 
with the unmarked state, we will solve it with sequences 
(a1,a2,.. .,an, M) where in the sequence  
a = (a1,a2,... ,an) we can have arbitrary choices of marked and 
unmarked states with the stipulation that no two consecutive terms 
are both unmarked. 
 
In this way we are led to consider sequences of marked and 
unmarked states such that no two consecutive elements of the 
sequence are unmarked. It is easy to see that the number of such 
sequences of length n is the n+1-th Fibonacci number f(n+1) 
where  
f(0) = 1, f(1) = 1, f(2) = 2 and so on. 
 



*

**

** ** *  
 
The upshot is that the dimension of the space V(n+2) of 
interactions of n+2 elementary marked particles to produce a single 
unmarked particle is the Fibonacci number f(n). 
 
Note that the form of the infinite tree indicated above is a division 
into two infinite trees (the one below * and the one below the mark) 
with the left tree obtained from the right tree by shifting it down 
one level and placing a star on the left of every sequence in the 
right tree. The right tree we shall call T, and the whole tree S. Then 
it is the case that the right tree is obtained from the whole tree by 
putting a mark to the left of each sequence on the whole. Thus we 
have the situation diagrammed below. In writing equations we have 
used a mark over a symbol to denote the down-shifting of the 
corresponding tree structure. 
 



  

*

**

** ** *

... ...

=   T*T
=

T*T

S =

S

T =      S  
 
We can combine these equations to obtain 
 

=   T*TS

T =      S  
 
Hence 
 

S
S* S

=
*

=
 

 
 



 
and with this reentry form for the Fibonacci sequences, we return 
again to the pattern of the Fibonacci Form. 
 

F = F  F=
 

 
 
This natural appearance of the Fibonacci Numbers and the 
Fibonacci Form in the self-interactions of the mark has far-reaching 
consequences. It turns out that there is an intimate relationship of 
the properties of this model with certain unitary representations of 
the braid group, and that these representations can be used to 
generate a robust set of unitary matrices. These matrices can, in 
turn be configured as a topological quantum field theory, and this 
field theory can model the operations of a quantum computer. See 
[KF, KP, Preskill] for more details of this story of the Fibonacci 
Anyons. The Fibonacci Series gets around. 
 
VII. The Quantized Mark 
We will give a hint here about how this unitary representation 
works. Consider processes that conform to the following tree. 

X

X =        or   *

M = 

 
 
Threre are only two possibilities here. The two initial marks on the  
left either interact to procduce a mark, or they interact to produce a 
star. This production, X, then is constrained to interact with the 
second mark to produce a mark. Thus the space of possibilities is  
two dimensional. We can write M for the mark and write 
|X> for the two basis states for this space. Then we have that  



This space of processes has basis { |*>, |M> }. It is a two dimesional 
space and we can regard it as a single-qubit space, the beginning of  
quantum computation.  
 
Call the space spanned by these proceeses H. 
A qubit is a vector in this space with the form  

|v> = a |*> + b|M>  
where a and and b are complex numbers such that |a|2 + |b|2 = 1. 
In the quantum model, an observaton of |v> results in either |*> 
or |M> with the probability of observing |*> equal to |a|2 and the  
probability of observing |M> equal to |b|2. This sort of probability is 
preserved by unitary transformations of the space H. A uniitary 
transformation is represented by a 2 x 2 matrix U such that  

U* = U-1 
where U* denotes the conjugate transpose of U (transpose the 
matrix and take the complex conjugates of its entries). In the 
quantum model, all (unobserved) physical processes are 
represented by unitary transformations of the state space H. 
Of course one often needs higher dimensional spaces and these can  
be obtained by taking tensor products of H with copies of itself. 
The same principles about measurement and unitarity apply to the 
higher dimensional spaces. This is quantum mechanics in a nutshell! 
 
Now we have structured our space H so that it corresponds to 
interactions of three marks in the associated order (MM)M as in the  
tree of the last figure. The tree itself suggests that maybe we could 
consider braiding of the particles. 
                           

                             
 
Because we envisage these particles as interacting in a plane space, 
it is possible for the interchange of two particles to give rise to a 



phase change in the quantum wave function for them. We take the 
wave function that represents the process for the particle 
interaction. Thus a different phase could occur if M interacts with 
itself to produce * or to produce M. We can  write 

R|*> = µ |*> 
R|M> = λ  |M> 

for this phase change, where µ and λ are unit complex numbers. 
Things get more interesting when we consider braiding of three or 
more particles. 
 

Then  we have to consider changing basis from one process space 
to another in order to measure the braiding of the second two  
particles (who have to interact directly to let us see their phase 
change). This coordinate transformation is here denote by a matrix 
F that is also 2 x 2 and unitary. 
 



          
 
The braiding of the right hand particles is then represented by the 
matrix B = F-1RF and we have that R and B give a unitary 
representation of the three-strand braid group. In this way unitary  
transformations, and hence quantum processes, can be represented 
by braids. This is the beginning of the theory of topological 
quantum computing. 



        
In general, the process spaces can be arbitarily large, involving 
many  
particle interactions. 
 

           



 
The parameters for R and F shown above give the well-known 
Fibonacci model. This yields as unitary braid group representation 
on our process space U and this representation is dense in the set of  
all unitary 2 x 2 matrices. Thus any quantum process on H can be 
represented by Fibonacci braiding. The same holds true for the  
corresponding higher dimensional Fibonacci process spaces. We 
conclude that such braiding vaults the quantum mechanics of the 
Fibonaccci processes related to the act of distinction to generate all 
possible quantum processes. 
 
A possible application of these ideas occurs in the fractional 
quantum hall effect  where collective excitations of electrons in a 
super-cooled metal plate behave like these Fibonacci particles. 
 

           
 
In the quantum Hall effect  [MR] the metal plate is in a transverse 
magnetic field and a current is imposed across the plate. 
The resistance of the plate in the direction perpendicular to this 
current has been observed to be subtly quantized. The braiding of 
collective electron excitations (quasi-particles) are invoked to 
explain this effect. It is possible that quantum computers will be 
built using these effects of braiding. 
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