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Here be Dragons

Goals:

Give a quick survey about strongly minimal sets and their geometry
from a model theoretic perspective

Describe what is know about strongly minimal sets in DCF–the theory
of differentially closed fields with one derivation and characteristic
zero.

This perspective gives us a strong dividing line between parts of
differential algebraic geometry that behave like algebraic geometry
and parts that do not.
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Strongly Minimal Sets

General Setting: Fix a language L and L-theory T and work in M a
universal domain for T . For example, L = {+, ·, δ, 0, 1}, T =DCF, K a
universal differentially closed field

Definition

X ⊆Mn is definable if there is an L-formula φ(x1, . . . , xn, y1, . . . , ym) and
b ∈Mm such that X = {a ∈Mm : φ(a,b)}

Example: X = {a ∈M : ∀w∃v w 2 + vw + bv = a}.
In DCF, definable = Kolchin-constructible.

Definition

A definable set X ⊆Mn is strongly minimal if X is infinite and for every
definable Y ⊂ X either Y or X \ Y is finite.
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Examples of Strongly Minimal Sets

Definition

A definable set X ⊆Mn is strongly minimal if X is infinite and for every
definable Y ⊂ X either Y or X \ Y is finite.

ACF: K an algebraically closed field and X ⊆ Kn an irreducible
algebraic curve (± finitely many points).

DCF: K differentially closed, C the field of constants.

Equality: M an infinite set with no structure and X = M.

Successor: M an infinite set f : M→M a bijection with no finite
orbits, X = M.

DAG: M a torsion free divisible abelian group, X ⊆Mn a translate of
a one-dimensional subspace defined over Q.
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Model Theoretic Algebraic Closure

Definition

If a ∈M, B ⊂M, a is algebraic over B if there is an L-formula
φ(x , y1, . . . , ym) and b ∈ Bm such that φ(a,b) and {x ∈M : φ(x ,b)} is
finite.
Let cl(B) = {a : a algebraic over B}.

ACF: cl(A)= algebraic closure of field generated by A.

DCF: cl(A)=algebraic closure of differential field generated by A.

equality: cl(A) = A.

Successor: cl(A) =
⋃

a∈A orbit of a

DAG: cl(A) = spanQ(A).
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Combinatorial Geometry of Strongly Minimal Sets

Definition

A strongly minimal set X is trivial if cl(A) =
⋃

a∈A cl({a}) for all A ⊆ X .

Equality and Successor are trivial

Definition

A strongly minimal set X is modular if c ∈ cl(B ∪ {a}), then c ∈ cl(b, a)
for some b ∈ B, for all a ∈ X , B ⊆ X .

DAG is non-trivial modular: If c =
∑

mibi + na where mi , n ∈ Q, then
c = b + na where b =

∑
mibi .

ACF is non-modular

Skip Families of Curves
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Families of Curves

Let X be strongly minimal. Suppose L ⊂ X × X ×Mk is definable. For
a ∈Mk let la = {(x , y) ∈ X 2 : (x , y , a) ∈ L} and assume each la is
strongly minimal.

Suppose K is ACF, let L = {(x , y , a, b) : y = ax + b}, the family of
non-vertical lines is a two-dimensional family of strongly minimal sets.

If G is a DAG L = {(x , y , a) : y = mx + a}, m ∈ Q is a one dimensional
family.

Theorem (Zilber)

A strongly minimal set X is non-modular iff there is a family of curves of
dimension at least two.
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When are two strongly minimal sets “the same”?

Definition

Two strongly minimal sets X and Y are non-orthogonal (X 6⊥ Y ) if there
is a definable R ⊆ X × Y such that {y ∈ Y : (x , y) ∈ R} is non-empty
finite for all but finitely many x ∈ X .

Idea: “non-orthogonal”= intimately related, “orthogonal”=not related.

In ACF: If X is a curve there is ρ : X → K rational so X 6⊥ K .

In DCF: If X and Y are strongly minimal sets defined over a differentially
closed field K , then X ⊥ Y if and only if for a ∈ X (K) \ X (K ),
Y (K 〈a〉dcl) = Y (K )–i.e., adding points to X does not force us to add
points to Y .
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Zilber’s Principle

Zilber’s Principle: Complexity of the combinatorial geometry is an avatar
of algebraic structure.

trivial strongly minimal sets have no infinite definable groups

Theorem (Hrushovski)

If X is a nontrivial modular strongly minimal set, there is an interpretable
modular strongly minimal group G such that X 6⊥ G .

Theorem (Hrushovski-Pillay)

If G is a group interpretable in a modular strongly minimal set, then any
definable subset of Gn is a finite Boolean combination of cosets of
definable subgroups.

Zilber Conjectured that non-modular strongly minimal sets only occur in
the presence of an algebraically closed field, but Hrushovski refuted this in
general.
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Strongly Minimal Sets in DCF–Early Results

The field of constants C is non-locally modular

There are many trivial strongly minimal sets

Theorem (Rosenlicht/Kolchin/Shelah)

The differential equation y ′ = y 3 − y 2. Defines a trivial strongly minimal
set. If a1, . . . , an, b1, . . . , bn are distinct solutions with ai , bi 6= 0, 1, then
there is an automorphism σ of K with σ(ai ) = bi .
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Zilber’s Principle for DCF

Theorem (Hrushovski-Sokolovic)

If X ⊆ Kn is strongly minimal and non-locally modular, then X 6⊥ C .

The original proof used the high powered model theoretic machinery of
Zariski Geometries developed by Hrushovski and Zilber.

This was later given a more elementary conceptual proof by Pillay and
Ziegler.

The Modular Classification
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Nontrivial Modular Strongly Minimal Sets in DCF

Where do we look for nontrivial modular strongly minimal sets?

By Hrushovski’s result we should look for a modular strongly minimal
group G .

By a result of Pillay’s we may assume that G ⊆ H where H is an
algebraic group.

By strong minimality we may assume that H is commutative and has
no proper algebraic subgroups.

If H is Ga, G must be a finite dimensional C -vector space so G 6⊥ C .

If H is Gm or a simple abelian variety defined over C , either
I G ⊆ H(C ) and G 6⊥ C , or
I G ∩ H(C ) is finite. In this case let l : H → Kd be the logarithmic

derivative. Then G 6⊥ l(G ) is a a finite dimensional C vector space and
G 6⊥ C .
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Nontrivial Strongly Minimal Sets in DCF

Theorem (Hrushovski-Sokolovic)

If A is a simple abelian variety that is not isomorphic to one defined
over C and A] is the Kolchin-closure of the torsion points, then A] is
a modular strongly minimal set.

If X is a modular strongly minimal set then there is A as above such
that X 6⊥ A].

A]
0 6⊥ A]

1 if and only if A0 and A1 are isogenous.

The key tool is the Buium-Manin homomorphism, a differential algebraic
µ : A→ Kn such that ker(µ) = A] and the result that A] is Zariski dense
and has no proper proper infinite differential algebraic subgroups.

The Trivial
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Diophantine Applications

The strongly minimal sets A] play a fundamental role in Buium’s and
Hrushovski’s proofs of the Mordell-Lang Conjecture for function fields in
characteristic 0.

Corollary

If A is a simple abelian variety not isomorphic to a variety defined over C
with dim(A) ≥ 2 and X ⊂ A is a curve, then X contains only finitely
many torsion points.

Proof Since X ∩ A] is infinite and A] is strongly minimal, X ∩ A] is
cofinite in A] and hence Zariski dense in A, a contradiction.
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Trivial Pursuits

So far there is no good theory of the trivial strongly minimal sets.

Look for examples:

Rosenlicht, Kolchin, Shelah style examples: y ′ = f (y), f a rational
function over C . We can determine triviality by studying the partial
fraction decomposition of 1/f . Generically trivial.

Hrushovski-Itai: For X a curve of genus at least 2 defined over C
there is a trivial Y ⊂ X such that K(X ) = K〈Y 〉.
Nagloo-Pillay: Generic Painlevé equations.
For example, if α ∈ C is transcendental over Q, then PII (α) is
strongly minimal and trivial where PII (α) is y ′′ = 2y 3 + ty + α.

If we have any sufficiently rich family of definable sets is a generic set
trivial strongly minimal?
For example: sets f (y , y ′, y ′′) = 0 where f is a generic degree d
polynomial over C ?

Dave Marker (UIC) Model Theory and Diff Alg Geom January 6, 2012 15 / 16



Trivial Pursuits

Is there any structure theory for trivial strongly minimal sets?

Conjecture If X is a trivial strongly minimal set and A ⊂ X is finite, then
cl(A) is finite.

Hrushovski has proved this when X has transcendence degree 1.
One tool of his proof is of independent interest.

Theorem (Hrushovski)

Suppose V is an irreducible Kolchin closed set of transcendence degree 2
defined over C such that there are infinitely many irreducible Kolchin
closed X ⊂ V of transcendence degree 1 defined over C . Then there is a
nontrivial differential rational f : V → C , in which case {f −1(c) : c ∈ C}
is a family of Kolchin closed subsets.
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