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We assume throughout these notes that (K,≺K) is an a.e.c. in a countable vocabulary
with LS(K) = ω. We prove the following result.

Theorem 1. Assume that (K,≺K) has finite character. Let M ∈ K and assume that
M≡∞ωN . Then N ∈ K.

For completeness we give the definition of finite character which we use.

Definition. (K,≺K) has finite character iff for M, N ∈ K we have M≺KN iff M ⊆ N and
for every (finite) ā ∈ M there is some K-embedding of M into N fixing ā.

Shelah [Sh:88] showed that the closure properties for chains given by the a.e.c. axioms
also hold for directed families. In particular he established the following.

Lemma 2. Let S be a family of countable structures in K which is directed under ≺K.
Then

⋃

S ∈ K.

We use the methods of countable approximations (see our earlier Lecture Notes). We
first note the following.

Lemma 3. a) If M ∈ K then M s≺KM a.e.
b) If M ∈ K and M0≺KM is countable then M0≺KMs a.e.

Proof: a) {s ∈ Pω1
(M) : Ms≺KM} is unbounded, since LS(K) = ω. It is closed by the

coherence and chains axioms.
b) Since M0 ⊆ Ms a.e. this follows from part a and the coherence axiom. a

From now on, x̄, ā etc are used exclusively for ω-sequences, and ran(ā) = {ak :
k ∈ ω}. We define (M, ā)≡∞ω(N, b̄) to hold iff ā and b̄ satisfy the same formulas of
L∞ω. Since formulas of L∞ω have just finitely many free variables, this happens iff
(M, (ai)i<n)≡∞ω(N, (bi)i<n) for all n ∈ ω. The serious work towards proving Theorem 1
begins with the following Lemma.

Lemma 4. Let M ∈ K, let M0≺KM be countable, let n ∈ ω, and let a0, . . . , an−1 ∈ M0.
Let N ∈ K be arbitrary, let b0, . . . , bn−1 ∈ N , and assume (M, (ai)i<n)≡∞ω(N, (bi)i<n).
Then

(

there is a K-embedding h of M0 into Ns such that h(ai) = bi for all i < n
)

a.e.

Proof: We abbreviate the assertion within parentheses which we wish to show holds a.e.
by E(N, (bi)i<n, s). Define

Y = {s ∈ Pω1
(N) : E(N, (bi)i<n, s)}.

We will show that Y ∈ Dω1
(N) by showing that player IIY has a winning strategy in the

game G(Y ).
By Lemma 3, M0≺KMs a.e., so
X = {s ∈ Pω1

(M) : M0≺KMs, Ms = s} ∈ Dω1
(M)

and thus player IIX has a winning strategy in the game G(X).
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The winning strategy for IIY is obtained as follows. Say IY chooses d0 ∈ N . Pick
some c0 ∈ M such that (M, (ai)i<n, c0)≡∞ω(N, (bi)i<n, d0). In the game G(X) have player
IX choose c0. Using his winning strategy player IIX responds by choosing c1. Pick some
d1 such that (M, (ai)i<n, c0, c1)≡∞ω(N, (bi)i<n, d0, d1). Player IIY now chooses this d1 as
his response to IY ’s move.

Continuing in this way we obtain sequences c̄ = (ci)i∈ω from M and d̄ = (di)i∈ω from
N such that

(?) (M, (ai)i<n, c̄)≡∞ω(N, (bi)i<n, d̄).
Since IIX plays using his winning strategy we know that ran(c̄) = s0 ∈ X, so M0≺KMs0

and Ms0 = s0.
Let s1 = ran(d̄). Define g : M s0 → N by g(ci) = di for all i ∈ ω. Then g is an

isomorphism of M s0 onto Ns1 and Ns1 = s1. Let N0 = g[M0]. Then N0≺KNs1 , since ≺K

is preserved by the isomorphism g. Necessarily g(ai) = bi for all i < n, by (?). Therefore
h = g|M0 is a K-embedding of M0 into Ns such that h(ai) = h(bi) for all i < n, and so
s1 ∈ Y . a

Lemma 5. Assume that (K,≺K) has finite character. Let M ∈ K, M0≺KM countable,
and let ā be an ω-sequence with ran(ā) = M0. Let N be arbitrary, let b̄ be an ω-sequence
from N , and assume that (M, ā)≡∞ω(N, b̄). Then ran(b̄) = N0 where N0≺KNS a.e.

Proof: By Lemma 4 we know that E(N, (bi)i<n, s) holds a.e., for each n ∈ ω. Note that g

defined by g(bi) = ai for all i ∈ ω is an isomorphism of N0 onto M0. Thus E(N, (bi)i<n, s)
implies

E∗(N, (bi)i<n, s): there is a K-embedding of N0 into Ns fixing bi for all i < n,
so for each n ∈ ω, E∗(N, (bi)i<n, s) holds a.e. But the ‘almost all’ filter is countably
complete, so in fact

(

for every n ∈ ω E∗(N, (bi)i<n, s)
)

holds a.e.
By finite character we conclude that N0≺KNs a.e., as desired. a

Lemma 6. Assume that (K,≺K) has finite character. Let M ∈ K and assume that
M≡∞ωN . Then for every countable B0 ⊆ N there is some countable N0 ⊆ N such that
B0 ⊆ N0 and N0≺KNs a.e.

Proof: We show how to find a countable ω-sequence ā from M such that ran(ā) = M0

where M0≺KM and an ω-sequence b̄ from N such that (M, ā)≡∞ω(N, b̄) and B0 ⊆ ran(b̄).
It then follows from Lemma 5 that N0 = ran(b̄) is as desired.

Since Ms≺KM a.e. by Lemma 3, we know that
X = {s ∈ Pω1

(M) : Ms≺KM, Ms = s} ∈ Dω1
(M)

and so player II has a winning strategy in the game G(X).
Enumerate B0 as {b2k : k ∈ ω}. Pick a0 ∈ M such that (M, a0)≡∞ω(N, b0) and

have player I choose a0 in the game G(X). Using the winning strategy, player II chooses
a1 ∈ M . Now find b1 ∈ N such that (M, a0, a1)≡∞ω(M, b0, b1).

Continuing in this way, {ak : k ∈ ω} = s ∈ X, so M0 = Ms≺KM and ran(ā) = M0.
Since (M, ā)≡∞ω(N, b̄) and B0 ⊆ ran(b̄) by construction, we are done. a

Note that this argument actually establishes the stronger conclusion that (N0≺KNs

a.e.) holds for almost all countable N0 ⊆ N .
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We now easily obtain the Theorem.

Proof of Theorem 1: Define S to be
{N0 ⊆ N : N0 is countable, N0≺KNs a.e.}.

We first note that if N0, N1 ∈ S and N0 ⊆ N1 then N0≺KN1 by coherence, since there will
be some N ′ ⊆ N such that both N0≺KN ′ and N1≺KN ′.

Secondly, by Lemma 6, N =
⋃

S and S is directed under ⊆. But by our first remark,
S will then be directed under ≺K, and so N ∈ K by Lemma 2. a

In fact, Theorem 1 is a consequence of the following stronger result.

Theorem 7. Assume that (K,≺K) has finite character. Then K = Mod(θ) for some
θ ∈ L(ω).

We outline, without proof, what needs to be done to obtain this stronger Theorem.
The first, and most important, step is to show that the property in the conclusion of
Lemma 4 is L(ω)-definable.

Lemma 8. Let M0 ∈ K be countable, let n ∈ ω, and let a0, . . . , an−1 ∈ M0. Then there
is ϕ(M0,(ai)i<n)(x0, . . . , xn−1) ∈ L(ω) such that for all N and b0, . . . , bn−1 ∈ N ,

N |= ϕ(M0,(ai)i<n)(b0, . . . , bn−1) iff E(N, (bi)i<n, s) holds a.e.

For any countable M0 ∈ K and any ω-sequence ā such that ran(ā) = M0 we define
ϕM0,ā =

∧

n∈ωϕ(M0,(ai)i<n). Note that ϕM0,ā ∈ L(ω) even though it has infinitely many
free variables. The next Lemma follows using the proof of Lemma 5.

Lemma 9. Assume (K,≺K) has finite character. Let M0 ∈ K be countable and let ā be
such that ran(ā) = M0. Then for any N and ω-sequence b̄ from N , N |= ϕM0,ā(b̄) iff the
mapping g defined by g(ak) = bk for all k ∈ ω defines an isomorphism of M0 onto some
N0 such that N0≺KNs a.e.

Next, define ϕ(x̄) =
∨

{ϕM0,ā : M0 ∈ K is countable and ran(ā) = M0}. The following
is clear.

Lemma 10. Assume that (K,≺K) has finite character. For any N and ω-sequence b̄ from
N , N |= ϕ(b̄) iff ran(b̄) = N0 where N0≺KNs a.e.

Finally we define θ = (∀x2n∃x2n+1)n∈ωϕ(x̄). Then θ ∈ L(ω) since it has no free
variables and ϕ ∈ L(ω). If M ∈ K then M |= θ by Lemmas 3 and 10. The proof that
M |= θ implies M ∈ K is just like the proof of Theorem 1, using the hypothesis that
M |= θ in place of Lemma 6.
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