Math 215: Introduction to Advanced Mathematics
 Problem Set 11

Due: Friday December 1

1) Let $n \in \mathbb{N}$. Suppose $A \subseteq \mathbb{N}_{2 n}$ and $|A|=n+1$. Prove that A contains a pair of distinct integers a, b such that a divides b. [Hint: Consider the function $f: A \rightarrow\{1,3,5, \ldots, 2 n-1\}$ where $f(a)=$ largest odd integer dividing a and apply the Pigeonhole Principle. Note that any $n \in \mathbb{N}$ can be written uniquely as $n=m 2^{M}$ where m is odd.]
2) a) Suppose $f: X \rightarrow \mathbb{N}_{m}$ is injective but not surjective. Construct an injection $g: X \rightarrow \mathbb{N}_{m-1}$. Conclude that X is finite and $|X| \leq m-1$.
b) Suppose Y is finite and $f: X \rightarrow Y$ is injective but not a surjection. Prove that $|X|<|Y|$.
c) Suppose X and Y are finite and $|X|=|Y|$, then every injection $f: X \rightarrow Y$ is a surjection.
3) a) Suppose $f: X \rightarrow Y$ is a surjection. We showed in Problem Set 8 that there is a right-inverse $g: Y \rightarrow X$ such that $f \circ g=I_{Y}$. Prove that g is injective.
b) Suppose X is finite and $f: X \rightarrow Y$ is surjective. Prove that Y is finite and $|Y| \leq|X|$.
c) Suppose X and Y are finite, $|X|=|Y|$ and $f: X \rightarrow Y$ is surjective. Prove that f is injective. [Hint: Apply 1c) to the right-inverse g to conclude that g is surjective and use this fact.]
