Math 435 Number Theory I

Midterm 1-Solutions

1) (10 pt) State the Fundamental Theorem of Arithmetic.

If $n>1$, then there are prime numbers p_{1}, \ldots, p_{m} and $e_{1}, \ldots, e_{m} \in \mathbb{N}$ such that $N=p_{1}^{e_{1}} \cdots p_{m}^{e_{m}}$. Moreover this factorizaiton is unique up to permutation of the p_{i}. In other words, if $p_{1}<\ldots<p_{m}, q_{1}<\ldots<q_{s}$ are primes, $f_{1}, \ldots, f_{s} \in \mathbb{N}$ and $N=q_{1}^{f_{1}} \cdots q_{s}^{f_{s}}$, then $m=s$, and $q_{i}=p_{i}, e_{i}=f_{i}$ for all $i=1, \ldots, m$.
2) (30 pt) Decide if the following statements are TRUE or FALSE. If FALSE, explain why it is FALSE or give a counterexample
a) If $a \mid c$ and $b \mid c$, then $\operatorname{lcm}(a, b) \mid c$.

TRUE
b) There is unique congruence class mod 81 solving the congruence $6 x \equiv$ $15(\bmod 81)$.

FALSE. Since $\operatorname{gcd}(6,15,81)=3$, there will be 3 incongruent solutions mod 81.
c) There is a unique congruence class mod 810 solving the system of congruences

$$
x \equiv 7(\bmod 10), x \equiv 12(\bmod 15) \text { and } x \equiv 22(\bmod 81) .
$$

FALSE. If $x \equiv 12(\bmod 15)$, then $x \equiv 0(\bmod 3)$. But if $x \equiv 22(\bmod 81)$, then $x \equiv 1(\bmod 3)$, so there are no solutions.
d) If $a \mid n$ and $b \mid n$, then $a b \mid n$.

FALSE. $6 \mid 24$ and $3 \mid 24$ but $18 / \div 24$.
$3)(15 \mathrm{pt})$ Use the Euclidean algorithm to find $\operatorname{gcd}(195,165)$ and to find integers x, y such that $195 x+165 y=\operatorname{gcd}(195,165)$.

$$
\begin{aligned}
195 & =165+30 \\
165 & =5(30)+15 \\
30 & =2 * 15
\end{aligned}
$$

Thus $\operatorname{gcd}(195,165)=15$

$$
\begin{aligned}
15 & =165-5(30) \\
& =165-5(195-165) \\
& =6(165)-5(195)
\end{aligned}
$$

4) (15pt) Find all congruence classes solving the system of equations

$$
3 x \equiv 2(\bmod 5) \text { and } x \equiv 2(\bmod 7)
$$

First note that $3 x \equiv 2 \bmod 5$ if and only if $x \equiv 4(\bmod 5)$. So we must solve the system

$$
x \equiv 4(\bmod 5) \text { and } x \equiv 2(\bmod 7)
$$

We need to find u, v such that $7 u \equiv 1(\bmod 5)$ and $5 v \equiv 1(\bmod 7)$. We can take $u=3$ and $v=3$.

Thus we can take

$$
x=4(7)(3)+2(5)(3)=114 \equiv 9(\bmod 35)
$$

and [9] is the unique congruence class $\bmod 35$.
5) (10pt) Prove that $n \in \mathbb{N}$ is prime if and only if $\operatorname{gcd}(n,(n-1)!)=1$.
6) (10pt) Suppose the decimal representation of N is $a_{m} a_{m-1} \ldots a_{0}$ (i.e., $N=\sum_{i=0}^{m} a_{i} 10^{i}$). Prove that

$$
N \equiv a_{0}-a_{1}+a_{2}-a_{3}+\ldots+(-1)^{m} a_{m}(\bmod 11)
$$

In particular n is divisible by 11 if and only if $a_{0}-a_{1}+a_{2}-a_{3}+\ldots+(-1)^{m} a_{m}$ is.
7) Suppose a, b, c are integers and $\operatorname{gcd}(a, b)=1$. Prove there is $n \in \mathbb{Z}$ such that $\operatorname{gcd}(a n+b, c)=1$.

