Math 435 Number Theory I

Problem Set 1

Due: Friday September 2

All work should be shown. Proofs should be written clearly in complete sentences.

1) a) Use the Euclidean algorithm to calculate $\operatorname{gcd}(1785,1309)$.
b) Find integers x and y such that $1785 x+1309 y=\operatorname{gcd}(1785,1309)$.
2) Decide if the following equations have integer solutions. If so, find all integer solutions.
a) $165 X+45 Y=5$
b) $165 X+45 Y=30$
c) $165 X-45 Y=15$
3) a) Suppose $a, b, c \neq 0$. Prove that $\operatorname{gcd}(a, b, c)=\operatorname{gcd}(\operatorname{gcd}(a, b), c)$.
b) Let a, b, c be nonzero integers. Prove that the equation

$$
a X+b Y+c Z=d
$$

has a integer solutions if and only if $\operatorname{gcd}(a, b, c) \mid d$.
c) Find a solution to the equation

$$
14 X+35 Y+10 Z=243
$$

4) (Efficency of Euclidean algorithm)
a) Prove that if $a>b>0$ and $a=b q+r$ where $0 \leq r<b$, then $r<\frac{a}{2}$
b) Suppose $r_{-1}>r_{0}>r_{1}>r_{2}>\ldots>r_{n-1}=r_{n}>0$ is the sequence of remainders obtained doing the Euclidean algorthim to find $\operatorname{gcd}(a, b)$ where $r_{-1}=a$ and $r_{0}=b$. Prove that $r_{i}<\frac{r_{i-2}}{2}$ for $i=1, \ldots, n$ and that $r_{2 i}<\frac{b}{2^{i}}$ for $1 \leq i$ and $2 i \leq n$.
c) Conclude that the Euclidean algorithm terminates in at most $2 \log _{2}(b)$ steps.
d) Roughtly, how many steps will be need to find $\operatorname{gcd}(a, b)$ when b has 100 digits?
