Math 435 Number Theory I

Problem Set 11

1) Which of the following numbers are quadratic residues mod 1200 ?
a) 619
b) 841
c) 937
2) Use the method of descent from the proof of Theorem 10.1 to write 1973 as the sum of two squares. Start from the fact that $259^{2} \equiv-1(\bmod 1973)$.
3) Suppose p is prime and $p=a^{2}+5 b^{2}$ where $a, b \in \mathbb{Z}$. Prove that $p=5$ or $p \equiv 1$ or $9(\bmod 20)$.
4) (5pt Bonus) Let $f(X) \in \mathbb{Z}[X]$. Suppose $f(a) \equiv 0\left(\bmod p^{j}\right), p^{t} \mid f^{\prime}(a)$, $p^{t+1} X f^{\prime}(a)$ and $j \geq 2 t+1$. Prove that there is k such that if $b=a+p^{j-t} k$ then $f(b) \equiv 0\left(\bmod p^{j+1}\right)$.
