Math 435 Number Theory I

Problem Set 3

Due: Friday September 16:

1) Prove that there are infinitely many prime numbers of the form $6 n+5$.
2) a) Suppose x, y are integers. Prove that $x^{2}-y^{2}$ is either odd or divisible by 4. [Hint: factor].
b) Suppose N is either odd or divisible by 4. Prove that

$$
X^{2}-Y^{2}=N
$$

has an integral solution.
c) (bonus problem) Prove further that $X^{2}-Y^{2}=N$ has a unique solution in the nonnegative integers if and only if $|N|$ or $|N| / 4$ is either 1 or an odd prime.
3) Prove that $1+1 / 2+\ldots+1 / n$ is not an integer if $n>1$. [Hint: Note that

$$
1+1 / 2+\ldots 1 / n=\frac{\sum_{i=1}^{n} \frac{\operatorname{lcm}(1, \ldots, n)}{i}}{\operatorname{lcm}(1, \ldots, n)}
$$

Show

$$
\sum_{i=1}^{n} \frac{\operatorname{lcm}(1, \ldots, n)}{i}
$$

is odd. Consider the highest power of 2 among $1,2, \ldots, n$.]

