Math 435 Number Theory I

Problem Set 5

Due: Friday October 7:

1) Solve the following system of congruences.

$$
x \equiv 1(\bmod 24), x \equiv 13(\bmod 18), x \equiv 17(\bmod 20) \text { and } x \equiv 37(\bmod 75) .
$$

2) a) What is the remainder when 6^{2003} is divided by 11 ?
b) What is the smallest positive residue of $2^{1000000}(\bmod 7)$.
3) Find all solutions to

$$
x^{2}+6 x-31 \equiv 0(\bmod 72)
$$

[Hint: First find all solutions $\bmod 8$ and $\bmod 9]$.
4) Prove that

$$
\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}
$$

is an integer for all $n \in \mathbb{Z}$.

