## Math 435 Number Theory I

Problem Set 7

## Due: Friday October 21:

1) Find all solutions to $X^{2}+X+223 \equiv 0(\bmod 243)$. Note $243=3^{5}$.
2) Let $p$ be prime and let $f(X, Y) \in \mathbb{Z}[X, Y]$. Suppose $a, b \in \mathbb{Z}, f(a, b) \equiv$ $0(\bmod p)$ and $\frac{\partial f}{\partial X}(a, b) \not \equiv 0(\bmod p)$. Prove that $f(X, Y) \equiv 0\left(\bmod p^{n}\right)$ has a solution for all $n \geq 1$. [Hint: Consider the polynomial $g(X)=f(X, b)$.]
3) a) Calculate $\phi(100)$.
b) Find the last two decimal digits of $3^{403}$.
4) Suppose $1=b_{1}<b_{2}<\ldots<b_{\phi(n)}$ are the integers between 1 and $n$ that are relatively prime to $n$.
a) Show that $B=\prod_{i=1}^{\phi(n)} b_{i} \equiv \pm 1(\bmod n)$.
b) (Bonus 5pt) Characterize the $n$ for which $B \equiv-1$.
