Math 435 Number Theory I

Problem Set 9

Due: Friday November 4

1) Prove that 7 is a primitive root in U_{71}.
2) 5 is a primitive root in U_{23}. Below is a table of powers of $5 \bmod 23$.

n	1	2	3	4	5	6	7	8	9	10	11
5^{n}	5	2	10	4	20	8	17	16	11	9	22

n	12	13	14	15	16	17	18	19	20	21	22
5^{n}	18	21	13	19	3	15	6	7	12	14	1

For each of the following equations. Decide if there is a solution in \mathbb{Z}_{23}. If so find all solutions.
a) $X^{8} \equiv 13(\bmod 23)$.
b) $X^{8} \equiv 14(\bmod 23)$.
c) $X^{5} \equiv 21(\bmod 23)$.
3) Let $n>1$. Suppose g is a primitive root $\bmod n$. Develop an easy rule for determining for which k, g^{k} is a primitive root. Prove that your rule is correct.
4) a) Suppose $a=b^{2}$ and $n>2$. Prove that a is not a primitive root $\bmod n$. b) Is the same thing true if, instead, we assume $a=b^{3}$?

