Math 435 Number Theory I Problem Set 9

Due: Friday November 4

1) Prove that 7 is a primitive root in U_{71} .

2) 5 is a primitive root in U_{23} . Below is a table of powers of 5 mod 23.

n	1	2	3	4	5	6	7	8	9	10	11	
5^n	5	2	10	4	20	8	17	16	11	9	22	
n	12	1	3 1	4	15	16	17	18	19	20	21	22
5^n	18	2	1 1	3	19	3	15	6	7	12	14	1

For each of the following equations. Decide if there is a solution in \mathbb{Z}_{23} . If so find all solutions.

- a) $X^8 \equiv 13 \pmod{23}$.
- b) $X^8 \equiv 14 \pmod{23}$.
- c) $X^5 \equiv 21 \pmod{23}$.

3) Let n > 1. Suppose g is a primitive root mod n. Develop an easy rule for determining for which k, g^k is a primitive root. Prove that your rule is correct.

- 4) a) Suppose $a = b^2$ and n > 2. Prove that a is not a primitive root mod n.
 - b) Is the same thing true if, instead, we assume $a = b^3$?