Math 435 Number Theory I Sample Problems–Midterm I

Midterm 1 will cover chapters 1–3 of Jones and Jones and the supplementary material on Pythagorean triples.

The questions below are representative of the type of questions I might ask. (Note: This sample is, most likely, longer than the exam will be.)

1) State the Fundamental Theorem of Arithmetic.

- 2) Define the following concepts.
 - a) n is prime
 - b) $a \equiv b \pmod{n}$.
- 3) Use the Euclidean algorithm to find gcd(665, 114).

4) Decide if each of the following equations have integer solutions. If they can, find the general solution.

- a) 665x + 114y = 9
- b) 665x + 114y = 38

5) Find all solutions to the system of equations

 $x \equiv 3 \pmod{5}, x \equiv 2 \pmod{11}$ and $x \equiv 1 \pmod{3}$

6) Find all congruence classes mod 36 solving $6x \equiv 3 \pmod{36}$.

7) Decide if the following statements are TRUE or FALSE. If FALSE, give an example showing why they are FALSE.

a) If gcd(a, b) = 1, a|n and b|n, then ab|n.

b) There is a unique congruence class mod 60 solving the system of equaitons

 $x \equiv 3 \pmod{10}, x \equiv 5 \pmod{12}, x \equiv 2 \pmod{15}$

c) If $ab \equiv ac \pmod{n}$ and $a \not\equiv 0 \pmod{n}$, then $b \equiv c \pmod{n}$.

8) Suppose gcd(a, b) = d and gcd(a, n) = 1. Prove that $a \equiv b \pmod{n}$ if and only if $\frac{a}{d} \equiv \frac{b}{d} \pmod{n}$.

9) Prove there are is no integer x with $x^3 - x^2 + 3x = 16$ [Hint: Consider congruences mod some small primes.]

10) Suppose m > 1, $a \in \mathbb{N}$ and $a^m - 1$ is prime. Prove that a = 2 and m is prime.