Math 435 Number Theory I
Sample Problems-Midterm I

Midterm 1 will cover chapters $1-3$ of Jones and Jones and the supplementary material on Pythagorean triples.

The questions below are representative of the type of questions I might ask. (Note: This sample is, most likely, longer than the exam will be.)

1) State the Fundamental Theorem of Arithmetic.
2) Define the following concepts.
a) n is prime
b) $a \equiv b(\bmod n)$.
3) Use the Euclidean algorithm to find $\operatorname{gcd}(665,114)$.
4) Decide if each of the following equations have integer solutions. If they can, find the general solution.
a) $665 x+114 y=9$
b) $665 x+114 y=38$
5) Find all solutions to the system of equations

$$
x \equiv 3(\bmod 5), x \equiv 2(\bmod 11) \text { and } x \equiv 1(\bmod 3)
$$

6) Find all congruence classes mod 36 solving $6 x \equiv 3(\bmod 36)$.
7) Decide if the following statements are TRUE or FALSE. If FALSE, give an example showing why they are FALSE.
a) If $\operatorname{gcd}(a, b)=1, a \mid n$ and $b \mid n$, then $a b \mid n$.
b) There is a unique congruence class mod 60 solving the system of equaitons

$$
x \equiv 3(\bmod 10), x \equiv 5(\bmod 12), x \equiv 2(\bmod 15)
$$

c) If $a b \equiv a c(\bmod n)$ and $a \not \equiv 0(\bmod n)$, then $b \equiv c(\bmod n)$.
8) Suppose $\operatorname{gcd}(a, b)=d$ and $\operatorname{gcd}(a, n)=1$. Prove that $a \equiv b(\bmod n)$ if and only if $\frac{a}{d} \equiv \frac{b}{d}(\bmod n)$.
9) Prove there are is no integer x with $x^{3}-x^{2}+3 x=16$ [Hint: Consider congruences mod some small primes.]
10) Suppose $m>1, a \in \mathbb{N}$ and $a^{m}-1$ is prime. Prove that $a=2$ and m is prime.

