MCS 441 Theory of Computation

Problem Set 10

For any of the following problems you need only give an "implementation level" description of the machine.

1) Design a Turing machine that takes a number N in base 2 and calculates $N+1$ in base 2 .

Assume that we begin with $\# a_{n} a_{n-1} \ldots a_{0}$ on the input tape where $a_{i} \in\{0,1\}$ and $N=\sum a_{i} 2^{i}$ and ends with either $\# b_{n} \ldots b_{0}$ or $b_{n+1} \ldots b_{0}$ on the tape where $N+1=\sum b_{i} 2^{i}$.
2) Design a nondeterministic Turing machine to recognize the language
$L=\left\{\# w_{1} \# w_{2} \# \ldots \# w_{n} \#: n \geq 2, w_{i} \in\{0,1\}^{*}\right.$ and $w_{i}=w_{j}$ for some $\left.i<j\right\}$.
You may use multiple tapes if that's helpful.
3) Prove that every context free language is Turing decidable. [Hint: Recall that if L is context free there is a PDA recognizing L.

