MTHT 530 Analysis for Teachers II
 Problem Set 1

Due: Wednesday January 18

1) Verify the following limits using the definition of convergence.
a) $\lim _{n \rightarrow \infty} \frac{1}{6 n^{2}+1}=0$
b) $\lim _{n \rightarrow \infty} \frac{3 n+1}{2 n+5}=\frac{3}{2}$
c) $\lim _{n \rightarrow \infty} \frac{n+3}{n^{3}+4}=0$

Hint: It might be useful to note that $n+3 \leq 2 n$ for $n \geq 3$ and $n^{3}+4>n^{3}$ for all n.
d)) $\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n})=0$.

Hint: It might be useful to note that

$$
(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})=1
$$

2) Consider the sequence

$$
0,1,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1, \ldots
$$

where each string of zeros has one more zero than the previous. Does this sequence converge or diverge? If it converges to a limit L, prove that it converges to L. If it diverges, prove that it diverges.
3) Let $a_{1}=1$ and for each $n \in \mathbb{N}$ define

$$
a_{n+1}=\frac{3 a_{n}+4}{4} .
$$

a) Use induction to prove that the sequence satisfies $a_{n}<4$ for all $n \in \mathbb{N}$.
b) Prove $\left(a_{1}, a_{2}, \ldots\right)$ is increasing.
c) Prove that the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ converges.

