MTHT 530 Analysis for Teachers II
 Problem Set 2

Due Wednesday January 25

1) Use the defintion of limits to prove the following.
a) $\lim _{x \rightarrow 5} 3 x+2=17$
b) $\lim _{x \rightarrow 2} x^{3}=8$
2) Let

$$
f(x)= \begin{cases}x & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

Prove that $\lim _{x \rightarrow 0} f(x)=0$.
3) Give an example of each of the following or prove that it is impossible.
a) A sequence where no a_{n} is 0 or 1 but there are subsequences converging to both values.
b) A monotone sequence that diverges but has a convergent subsequence.
c) An unbounded sequence with a convergent subsequence.
d) A sequence that has a subsequence that is bounded but containing no convergent subsequence.
4) Suppose $\left(a_{n}\right)_{n=1}^{\infty}$ is a bounded sequence that does not coverge. Prove that there are convergent subsequences $\left(b_{n}\right)_{n=1}^{\infty}$ and $\left(c_{n}\right)_{n=1}^{\infty}$ that converge to different limits.
5) (5pt BONUS) Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence such that for all $q \in \mathbb{Q}$ there is an n such that $a_{n}=q$. Prove that for every $r \in \mathbb{R}$, there is a subsequence converging to r.

