MTHT 530 Analysis for Teachers II
 Problem Set 2

Due Wednesday February 1

Do Problems 3 and 5 from Chapter 7 of Spivak's Calculus. The solutions are in the back so you need only turn in 3 ii).

1) Let $f, g:[-1,1] \rightarrow \mathbb{R}$. Suppose f is is bounded (i.e., there is M such that $|f(x)| \leq M$ for all $x \in[-1,1]), g$ is continuous at 0 and $g(0)=0$. Let $h(x)=g(x) f(x)$.

Prove that h is continuous at 0 .
2) Let
$f(x)= \begin{cases}0 & \text { if } x \notin \mathbb{Q} \\ \frac{1}{n} & \text { if } n \in \mathbb{N} \text { is least such that there is } m \in \mathbb{Z} \text { with } x=\frac{m}{n} .\end{cases}$
For example, $f(0)=1, f(n)=1$ for each integer n,

$$
f(1 / 4)=f(3 / 4)=f(-7 / 4)=1 / 4 \ldots
$$

a) Prove that $\lim _{x \rightarrow a} f(x)=0$ for all $a \in \mathbb{R}$.
b) For which a is f continuous at a ?
3) Suppose $f:[0,1] \rightarrow \mathbb{R}$ and $g:[0,1] \rightarrow \mathbb{R}$ are continuous and $f(x)>g(x)$ for all $x \in[0,1]$. Prove that there is $a>0$ such that $f(x) \geq g(x)+a$ for all $x \in[0,1]$.
4) Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Prove that there are c, d such that f maps $[a, b]$ onto $[c, d]$.

