MTHT 530 Analysis for Teachers II

Problem Set 4

Due: Wednesday February 8

1) a) Suppose $0 \leq f(x) \leq g(x)$ for all $x \in \mathbb{R}$ and $\lim _{x \rightarrow a} g(x)=0$. Prove that $\lim _{x \rightarrow a} f(x)=0$.
b) Suppose $g(x) \leq f(x) \leq h(x)$ for all $x \in \mathbb{R}$ and $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)$. Prove that

$$
\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} f(x) .
$$

[Hint: Use a)]
2) Using the definition of the derivative calculate $f^{\prime}(2)$ for each of the following functions
a) $f(x)=\frac{1}{x^{2}}$
b) $f(x)=\sqrt{x}$.
3) Suppose $f, g, h: \mathbb{R} \rightarrow \mathbb{R}$ and $f(x) \leq g(x) \leq h(x)$ for all x, and $f^{\prime}(a)=$ $h^{\prime}(a)$.
a) Suppose $f(a)=g(a)=h(a)$. Prove that g is differentiable at a and $g^{\prime}(a)=f^{\prime}(a)=h^{\prime}(a)$.
b) Give an example showing this fails if we do not assume that $f(a)=g(a)=$ $h(a)$.
4) a) Suppose $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at 0 . Let $f(x)=x g(x)$. Prove that f is differentiable at 0 . What is $f^{\prime}(0)$?
b) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at 0 and $f(0)=0$. Prove that there is function $g(x)$ continuous at 0 such that $f(x)=x g(x)$ for all $x \in \mathbb{R}$. What is $g(0)$?

