MSCS Seminar Calendar

Monday January 22, 2018
pdf * Geometry, Topology and Dynamics Seminar
Geometry & topology of complex hyperbolic 2-manifolds
Matthew Stover (Temple University)
3:00 PM in SEO 636
I will discuss the geometry and topology of complex hyperbolic 2-manifolds, highlighting open questions and recent progress directly inspired by the last 40 years of work on hyperbolic 2- and 3-manifolds. Emphasis will be on explicit topological constructions (particularly of minimal volume manifolds), fibrations, and betti numbers. Much of this will cover joint work with Luca Di Cerbo.
Tuesday January 23, 2018
pdf * Model Theory Seminar
Organizational meeting
James Freitag (UIC)
1:00 PM in SEO 427
This semester, the model theory seminar will be topical, generally around o-minimal geometry, a natural generalization of semi-algebraic geometry over the real numbers. Please consider attending if you are interested - no particular background is required.

pdf * Special Colloquium
Constrained Factor Models for High-Dimensional Matrix-Variate Time Series
Elynn Y. Chen (Rutgers University)
3:00 PM in SEO 636
In many scientific fields, including economics, biology, and meteorology, high dimensional matrix-variate data are routinely collected over time. To incorporate the structural interrelations between columns and rows and to achieve significant dimension reduction when dealing with high-dimensional matrix-variate time series, Wang et al 2017 proposed a matrix factor model that is shown to be effective in analyzing such data. In this paper, we establish a general framework for incorporating domain or prior knowledge induced linear constraints in the matrix-variate factor model. The constraints can be used to achieve parsimony in parameterization, to facilitate interpretation of the latent matrix factor, and to target specific factors of interest based on domain knowledge. Fully utilizing the constraints results in more efficient and accurate modeling, inference, dimension reduction as well as a clear and better interpretation of the results. In this paper, constrained, multi-term, and partially constrained factor models for matrix-variate time series are developed, with efficient estimation procedures and their asymptotic properties. We show that the convergence rates of the constrained factor loading matrices are much faster than those of the conventional matrix factor analysis under many situations. Simulation studies are carried out to demonstrate the finite-sample performance of the proposed method and its associated asymptotic properties. We illustrate the proposed model in three applications, where the constrained matrix-factor models outperform their unconstrained counterparts in the power of variance explanation under the out-of-sample 10-fold cross-validation setting.
Tea time at 4pm at SEO 300.

pdf * Logic Seminar
Machine learning and independence
James Freitag (UIC)
3:30 PM in SEO 427
The relationship between machine learning and the independence property (in the sense of model theory) is well-known. This seminar is not about that kind of independence. We will give an example of a natural problem in machine learning whose answer does not follow from ZFC.
Wednesday January 24, 2018
pdf * Special Colloquium
Modern Classification with Big Data
Boxiang Wang (University of Minnesota)
3:00 PM in SEO 636
Rapid advances in information technologies have ushered in the era of "big data" and revolutionized the scientific research. Big data creates golden opportunities but has also arisen unprecedented challenges due to the massive size and complex structure of the data. Among many tasks in statistics and machine learning, classification has diverse applications, ranging from improving daily life to reaching the new frontiers of science and engineering. This talk will discuss the envisions of broader approaches to modern classification methodologies, as well as computational considerations to cope with the big data challenges. I will present a modern classification method named data-driven generalized distance-weighted discrimination. A fast algorithm with an emphasis on computational efficiency for big data will be introduced. Our method is formulated in a reproducing kernel Hilbert space, and learning theory of the Bayes risk consistency will be developed. In addition, I will use extensive benchmark data applications to demonstrate that the prediction accuracy of our method is highly competitive with state-of-the-art classification methods including support vector machine, random forest, gradient boosting, and deep neural network.

pdf * Graduate Analysis Seminar
Organizational Meeting
David Reynolds
4:00 PM in SEO 512

pdf * Algebraic Geometry Seminar
Singular spaces with trivial canonical class
Stephane DRUEL (Grenoble University)
4:00 PM in SEO 427
The Beauville-Bogomolov decomposition theorem asserts that any compact Kähler manifold with numerically trivial canonical bundle admits an étale cover that decomposes into a product of a torus, an irreducible, simply-connected Calabi-Yau, and holomorphic symplectic manifolds. With the development of the minimal model program, it became clear that singularities arise as an inevitable part of higher dimensional life. I will present recent works in which a singular version of the decomposition theorem is established.
Thursday January 25, 2018
pdf * Special Colloquium
Unified tests for functional concurrent linear models and the phase transition from sparse to dense functional data
Ping-Shou Zhong (Michigan State University)
3:00 PM in SEO 636
We consider the problem of testing functional constraints in a class of functional concurrent linear models where both the predictors and the response are functional data measured at discrete time points. We propose test procedures based on the empirical likelihood with bias-corrected estimating equations to conduct both pointwise and simultaneous inferences. The asymptotic distributions of the test statistics are derived under the null and local alternative hypotheses, where sparse and dense functional data are considered in a unified framework. We find a phase transition in the asymptotic null distributions and the orders of detectable alternatives from sparse to dense functional data. Specifically, the proposed tests can detect alternatives of root-$n$ order when the number of repeated measurements per curve is of an order larger than $n^{\eta_0}$ with $n$ being the number of curves. The transition points $\eta_0$ for pointwise and simultaneous tests are different and both are smaller than the transition point in the estimation problem. Simulation studies and real data analyses are conducted to demonstrate the proposed methods.

pdf * Louise Hay Logic Seminar
Model Theory and Machine Learning
Hunter Chase (UIC)
4:00 PM in SEO 427
We explain some fundamentals of machine learning and some connections with model theory. Joint with J. Freitag.
Monday January 29, 2018
pdf * Analysis and Applied Mathematics Seminar
TBA
Han Liu (University of Illinois at Chicago)
4:00 PM in SEO 636
TBA
Wednesday February 7, 2018
pdf * Statistics Seminar
Bayesian Experimental Design and Hierarchical Model for Quantitative and Qualitative Responses
Lulu Kang (Illinois Institute of Technology)
4:00 PM in SEO 636
In many science and engineering systems both quantitative and qualitative output observations are collected. For short, we call such a system QQ system. In this talk, I will talk about a systematical approach for the experimental design and data analysis for the QQ system.
Classic experimental design methods are not suitable here because they often focus on one type of responses. We develop both Bayesian D and A-optimal design methods for experiments with one continuous and one binary responses. Both noninformative and conjugate informative prior distributions on the unknown parameters are considered. The proposed design criterions has meaningful interpretations in terms of the optimality for the models for both types of responses. Efficient design construction algorithms are developed to construct the local D-and A-optimal designs for given parameter values.
To capture a correlation between the two types of responses, we propose a Bayesian hierarchical modeling framework to jointly model a continuous and a binary response. Compared with the existing methods, the Bayesian method overcomes two restrictions. First, it solves the problem in which the model size (specifically, the number of parameters to be estimated) exceeds the number of observations for the continuous response. Second, the Bayesian model can provide statistical inference on the estimated parameters and predictions. Gibbs sampling scheme is used to generate accurate estimation and prediction for the Bayesian hierarchical model. Both simulation and real case study are shown to illustrate the proposed method.

pdf * MATH Club
Chicago Red Light Cameras: An Analysis of Their Effectiveness
Robert Cappetta (UIC)
5:00 PM in seo 300
Thursday February 8, 2018
pdf * Quantum Topology / Hopf Algebra Seminar
On Two Invariants of Three Manifolds from Hopf Algebras
Xingshan Cui (Stanford University)
3:00 PM in SEO 612
We prove a conjecture concerning two quantum invariants of three manifolds that are constructed from finite dimensional Hopf algebras, namely, the Kuperberg invariant and the Hennings-Kauffman-Radford invariant. The two invariants can be viewed as a non-semisimple generalization of the Turaev-Viro-Barrett-Westbury (TVBW) invariant and the Witten-Reshetikhin-Turaev (WRT) invariant, respectively. By a classical result relating TVBW and WRT, it follows that the Kuperberg invariant for a semisimple Hopf algebra is equal to the Hennings-Kauffman-Radford invariant for the Drinfeld double of the Hopf algebra. However, whether the relation holds for non-semisimple Hopf algebras has remained open, partly because the introduction of framings in this case makes the Kuperberg invariant significantly more complicated to handle. We give an affirmative answer to this question. An important ingredient in the proof involves using a special Heegaard diagram in which one family of circles gives the surgery link of the three manifold represented by the Heegaard diagram. https://arxiv.org/pdf/1710.09524.pdf
Friday February 16, 2018
pdf * Departmental Colloquium
On the geometry of matrix multiplication
Joseph M. Landsberg (Texas A&M University)
3:00 PM in SEO 636
Our story begins with a spectacular failure: The standard algorithm to multiply two nxn matrices uses $n^3$ multiplications. In 1969, while attempting to show that the standard algorithm was optimal, V. Strassen discovered an explicit algorithm to multiply 2x2 matrices using 7 multiplications rather than $8=2^3$. It is a central question to determine just how efficiently one can multiply nxn matrices, both practically and asymptotically.
In this talk, I will present a history of the problem, both of upper and lower complexity bounds I will discuss how geometry, more precisely algebraic geometry and representation theory, are used. In particular, I will explain how, had someone asked him 100 years ago, the algebraic geometer Terracini could have predicted Strassen's algorithm. The talk will conclude with the recent use of representation theory to construct algorithms, more precisely, rank decompositions.
For those who can't wait for the talk, a detailed history and the state of the art appears in Landsberg, J. (2017). Geometry and Complexity Theory (Cambridge Studies in Advanced Mathematics 169).
Tea at 4:15 PM
Monday February 19, 2018
pdf * Analysis and Applied Mathematics Seminar
TBA
Hongjie Dong (Brown University)
4:00 PM in SEO 636
TBA
Wednesday February 21, 2018
pdf * Mathematics Computer Science Seminar
TBA
Bhargav Narayanan (Rutgers)
2:00 PM in TBD

pdf * MATH Club
Introduction to Colorings of Knots and Graphs
Lou Kauffman (UIC)
4:00 PM in SEO 300
Friday February 23, 2018
pdf * Departmental Colloquium
TBA
Mirela Ciperiani (University of Texas at Austin)
3:00 PM in SEO 636
Monday February 26, 2018
pdf * Analysis and Applied Mathematics Seminar
tba
Andreas Kloeckner (UIUC)
4:00 PM in SEO 636
tba
Wednesday February 28, 2018
pdf * Statistics Seminar
TBA
Li Wang (AbbVie Inc.)
4:00 PM in SEO 636
Wednesday March 7, 2018
pdf * Statistics Seminar
TBA
Ruijun Zhao (Minnesota State University)
4:00 PM in SEO 636

pdf * MATH Club
Analytic solutions for D-optimal factorial designs under generalized linear models
Jie Yang (UIC)
5:00 PM in seo 300
Friday March 9, 2018
pdf * Departmental Colloquium
TBA
Michael Loss (Georgia Institute of Technology)
3:00 PM in SEO 636
Monday March 12, 2018
pdf * Analysis and Applied Mathematics Seminar
TBA
Stephen Cameron (University of Chicago)
4:00 PM in SEO 636
TBA
Wednesday March 14, 2018
pdf * Algebraic Geometry Seminar
TBA
Simon Pepin Lehalleur (Freie Universität Berlin)
4:00 PM in SEO 427
TBA

pdf * Statistics Seminar
TBA
Yiou Li (DePaul University)
4:00 PM in SEO 636
Friday March 16, 2018
pdf * Departmental Colloquium
TBA
Avrim Blum (Toyota Technology Institute at Chicago)
3:00 PM in SEO 636
Monday March 19, 2018
pdf * Geometry, Topology and Dynamics Seminar
Group actions on quiver varieties and applications
Victoria Hoskins (Freie Universität Berlin)
3:00 PM in SEO 636
In joint work with Florent Schaffhauser, we study two types of actions on King's moduli spaces of quiver representations over a field k, and we decompose their fixed loci using group cohomology in order to give modular interpretations of the components. The first type of action arises by considering finite groups of quiver automorphisms. The second is the absolute Galois group of a perfect field k acting on the points of this quiver moduli space valued in an algebraic closure of k; the fixed locus is the set of k-rational points, which we decompose using the Brauer group of k and give a moduli theoretic description. Over the field of complex numbers, we describe the symplectic and holomorphic geometry of these fixed loci in hyperkähler quiver varieties using the language of branes.
Wednesday March 21, 2018
pdf * Statistics Seminar
TBA
Yuguo Chen (UIUC)
4:00 PM in SEO 636
Friday March 23, 2018
pdf * Departmental Colloquium
Workshop on Algebraic geometry and its broader implications
TBA (--)
3:00 PM in SEO 636
(general audience lecture)
Friday March 30, 2018
pdf * Departmental Colloquium

Spring Vacation
3:00 PM in SEO 636
Monday April 2, 2018
pdf * Analysis and Applied Mathematics Seminar
tba
Shijun Zheng (Georgia Southern University)
4:00 PM in SEO 636
tba
Wednesday April 4, 2018
pdf * Statistics Seminar
TBA
Daniel W. Apley (Northwestern University)
4:00 PM in SEO 636
Friday April 6, 2018
pdf * Departmental Colloquium
TBA
Andre Neves (University of Chicago and Imperial College London)
3:00 PM in SEO 636
Monday April 9, 2018
pdf * Analysis and Applied Mathematics Seminar
TBA
Dana Mendelson (University of Chicago)
4:00 PM in SEO 636
TBA
Tuesday April 10, 2018
pdf * Logic Seminar
TBA
Martin Zeman (University of California Irvine)
3:30 PM in SEO 427
Wednesday April 11, 2018
pdf * Statistics Seminar
TBA
Shunpu Zhang (University of Central Florida)
4:00 PM in SEO 636
Tuesday April 17, 2018
pdf * Logic Seminar
TBA
Natasha Dobrinen (University of Denver)
4:00 PM in SEO 427
Wednesday April 18, 2018
pdf * Statistics Seminar
TBA
Ruoqing Zhu (UIUC)
4:00 PM in SEO 636
Wednesday April 25, 2018
pdf * Statistics Seminar
TBA
Rui Song (North Carolina State University)
4:00 PM in SEO 636

pdf * Algebraic Geometry Seminar
TBA (Provisional)
Julien Keller (Aix Marseille Universite)
4:00 PM in SEO 427
Wednesday May 2, 2018
pdf * Statistics Seminar
My (Mis)Adventures in Modeling and Simulation
Peter Bonate (Astellas Pharma)
4:00 PM in SEO 636
Dr. Peter Bonate has over 20 years experience in modeling and simulation in the pharmaceutical industry. Dr. Bonate will discuss his career and the role modeling and simulation has played in the development of many different pharmaceutical products.
HTML 5 CSS FAE
UIC LAS MSCS > seminars > seminar calendar